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ABSTRACT

The need for effective energy harvesting from renewable resources becomes

increasingly important, especially in the light of the inevitable depletion of the fossil

fuel energy sources. Among renewable energy sources, wind energy represents one

of the most attractive alternatives. In this thesis, we construct several stochastic

optimization models, including the traditional risk-neutral expectation based model,

and risk-averse models based on linear and nonlinear coherent measures of risk, to

study the strategic planning and operation of futuristic power grids where the loads

are served from renewable energy sources (wind farms) through High Voltage Direct

Current lines. Exact solutions algorithms that employ Benders decomposition and

polyhedral approximations of nonlinear constraints have been proposed for the for-

mulated linear and nonlinear mixed-integer optimization problems. The conducted

numerical experiments illustrate the efficiency of the developed algorithms, as well

as effectiveness of risk-averse models in reducing the power grid’s exposure to power

shortage risks when the energy is produced from renewable sources. We further ex-

tend the risk-averse models to demonstrate how energy storage devices may impact

the risk profile of power shortages in the renewable energy power grid. Additionally,

we consider convex relaxations of optimal power flow problem over radial networks,

that allow for solving mixed-integer optimization problems in traditional alternating

current distribution networks. Exactness of a specific second-order cone program-

ming relaxation has been discussed. We finally propose an “extended” optimal power

v
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flow problem and prove its second-order cone programming relaxation to be exact

theoretically and empirically.
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PUBLIC ABSTRACT

As renewable energy resources increasingly contribute to the global energy

consumption and gradually replace traditional fossil fuels, how to harvest and utilize

renewables in an effective and efficient way becomes crucial. The advantages of re-

newable energy as a clean, plentiful and commonly available source of energy usually

come at a cost of uncertainty or intermittency, which would impact on the stability of

power grids and even cause mismatch between the power supply and load (considered

as power shortage risk) in some scenarios when using or integrating renewable energy

into transmission and distribution networks. Therefore, how to mitigate the negative

impact from the intermittency of renewable energy and hedge the power shortage

risk, is the main purpose of this study.

In this thesis, we focus on wind energy and consider the wind farm location

problem. Several stochastic optimization models are proposed in terms of various

criteria including risk-neutral expectation, linear and nonlinear coherent measures of

risk, which aim to demonstrate the importance of strategic planning of wind farms and

in which way power shortage risk can be reduced. Furthermore, we also investigate

the impact of energy storage devices on the risk profile of power shortage by extending

the risk-averse models. Lastly, the convexification of optimal power flow problem over

radial networks is studied, which is conducive to solving mixed-integer optimization

problems in traditional alternating current distribution networks.
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1

CHAPTER 1
INTRODUCTION

1.1 Wind Energy

1.1.1 Global Overview

Wind is a free and clean source of renewable energy. As an alternative to

traditional fossil fuels, wind energy not only significantly mitigates negative impact

on the environment (such as acid rain and greenhouse effect), but also is plentiful and

widely distributed, contributing to both social and economic development. According

to [8], the potential of global wind power as a source of electricity was assessed

to be 72 terawatts (TW) based on an analysis of data for the year 2000, which

has been found to account for about 40 times the global electricity demand of the

year 2001. In addition, the price of wind energy has decreased over 80% since 1980

and is competitive with or even cheaper than other possible resources [4], and more

importantly this trend is expected to be kept.

Due to various advantages of wind energy, the wind energy industry has experi-

enced substantial growth in the last few years globally. In 2014, the global wind power

installed capacity has reached an estimated 336,327 megawatts (MW), which can sat-

isfy around 4% of the global electricity demand [131]. According to [52] and [131],

the wind power installed capacity of some countries is listed in Table 1.1. From the

table, we find that the annualized growth rate of wind power installed capacity at

global level is over 26% during the last fifteen years, which results in the cumulative
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installed capacity by the end of 2013 is more than 32 times that by the end of 1998.

This exponential growth trend is further described in Figure 1.1 based on the data

from [48]. Almost 90% of the current global installed capacity is added during the

last 10 years (2004-2013).

Country End 2013 (MW) End 1998 (MW) Annualized Growth Rate
Canada 7,698 83 35.25 %
China 91,413 224 49.30 %
Denmark 4,772 1,450 8.27 %
India 20,150 968 22.43 %
Ireland 2,037 63 26.08 %
Italy 8,551 180 29.35 %
Germany 34,660 2,874 18.06 %
Netherlands 2,693 363 14.29 %
Portugal 4,724 60 33.79 %
Spain 22,959 834 24.73 %
Sweden 4,470 150 25.40 %
U.K. 10,531 334 25.87 %
U.S. 61,108 1,952 25.81 %
Other 42,746 304 39.06 %
Total 318,530 9,839 26.09 %

Table 1.1: Wind power installed capacity comparison

The Global Wind Energy Council (GWEC) has envisioned that by the year

2030, the wind power production could reach 2,000 gigawatts (GW) which roughly

amounts to 17-19% of the world’s electricity demand. This number will increase up

to 20-30% by the year 2050.
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Figure 1.1: Global cumulative wind power installed capacity (MW)

1.1.2 The United States Overview

In the United States, the wind energy industry has been one of the fastest

growing sectors of economy in the last several years. For the year 2013, the electricity

produced from wind power in the U.S. accounted for 4.13% of all generated electrical

energy, meaning that it became the fifth largest electricity source according to the

data from the Department of Energy’s Energy Information Administration (EIA). As

of the end of the year 2013, the cumulative installed wind power capacity in the U.S.

has reached 61,108 MW as the third largest wind power producer (almost 20% global

share). A detailed description with regard to states’ installed wind power capacity is

given in Figure 1.2.

As of the end of the year 2013, Texas has the highest installed capacity of

12,355 MW, followed by California (5,830 MW), Iowa (5,178 MW), Illinois (3,568

MW), and Oregon (3,153 MW). Based on the percentage of energy generated by wind

in 2013, the top five states are Iowa (27.4%), South Dakota (26.0%), Kansas (19.4%),
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Figure 1.2: Current wind power installed capacity in the U.S. as of 12/31/2013 (MW)

Idaho(16.2%), and Minnesota (15.7%). Annual installed wind power capacity in five

main wind power states of the U.S. is shown in Figure 1.3. The wind power in Texas

has developed fastest, with almost 35% annualized growth rate, especially during the

period (2004-2009). During the same period, the growth rate for Iowa was only lower

than that for Texas, and, as a result, the cumulative installed wind power capacity

exceeded the corresponding metrics for California in 2008 and kept ranking second in

cumulative installed capacity until 2012. Moreover, we may find that in some specific

years, the growth rates were close to zero, which corresponded to flat segments in

Figure 1.3, such as the period (2012-2013). One reasonable explanation for this may

be due to the expiry of the Federal Production Tax Credit (PTC), which has been

playing a crucial role in wind power development since being introduced in 1992. For
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instance, sharp drops of 77% and 91% in annual installations were observed in 2003

and 2012 following the expiry of PTC in 2004 and 2013.

Figure 1.3: Installed capacity growth of five main wind power states in the U.S.

According to a technical report from National Renewable Energy Laboratory

(NREL) [73], the United States has the total estimated onshore wind energy potential

of 10,955 GW, which could produce 32,784 TWh annually amounting to almost eight

times of total U.S. electricity consumption in 2011. Besides, the offshore wind energy

potential is estimated to be 4,150 GW [99]. By including a 4% contribution from

offshore wind power, the U.S. Department of Energy projected that by 2030 wind

power could generate 20% of total electricity demand in the U.S..
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1.1.3 Variability and Storage of Wind Power

1.1.3.1 Variability in Wind Speed

Although we have seen the tremendous growth in wind energy industry in the

past few years, the intermittency and variability of wind power generation remains

a major factor affecting the growth of wind energy industry and market penetra-

tion. The power generated by wind is a variable resource, and it varies based on the

availability of wind at any given point in time. That means, a wind turbine could

only produce when wind is available, and this makes wind power not dispatchable

as a power produced by a gas turbine, which can be scheduled to turn on and off.

Wind speed varies hourly, daily and seasonally. Within a day, wind speed is usually

greater during the daytime and smaller at night. This variability is illustrated in Ta-

ble 1.2 [121]. Also, the variation of wind speed has strong dependence on the time of

year. For example, the winds are strongest in the spring and weakest in the summer

for the southern Great Plains (Kansas, Oklahoma and Texas) [52]. There also exist

certain long-term variations in wind speed.

Compared with the variability of power generation by an individual wind tur-

bine, the aggregate variability of power generation by multiple turbines in a wind

farm is much smaller. And the variability could be further reduced if we consider

the aggregate power generation by multiple wind farms over a large geographic area.

That means, the intermittency of wind power may be mitigated to some extent by

cooperation and coordination among multiple wind farms.
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Time Wind Speed (mph) Time Wind Speed (mph)
00:00 0.36 12:00 1.23
01:00 1.66 13:00 1.35
02:00 0.95 14:00 1.13
03:00 3.76 15:00 2.62
04:00 1.46 16:00 1.95
05:00 0.96 17:00 1.46
06:00 2.02 18:00 1.09
07:00 0.75 19:00 0.30
08:00 0.64 20:00 2.22
09:00 2.00 21:00 0.93
10:00 1.79 22:00 1.14
11:00 3.17 23:00 0.12

Table 1.2: Hourly average wind speed: Bandon,

Oregon (01/01/2013)

1.1.3.2 Wind Energy Storage

Since the instantaneous energy generation and consumption in the power grid

should remain in balance, the penetration of variable wind energy source into grid

system may pose substantial challenges to the grid stability. Correspondingly, the cost

for regulation and operating reserve would definitely increase due to the intermittency

and non-dispatchable of wind energy generation. An efficient way to compensate this

variability is to utilize some sort of energy storage. This means that when wind

speed is high, the extra produced energy can be stored in some form, and this stored

energy then can be used to meet the demands of consumers during low wind periods,

which would reduce the effect of wind speed variability in wind energy production.

For example, a traditional power plant is able to increase the fuel supply when the
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penetration of wind farms is at a low level, and decrease it to bring energy generation

into equilibrium with load when the wind speed is high. In this case, one may consider

the traditional power plant as a storage device where energy storage is in the form of

fossil fuels.

As the most widely used form of bulk-energy storage, pumped hydroelectric

storage is undoubtedly a promising technology for store intermittent wind energy.

According to the Electric Power Research Institute (EPRI), the pumped hydroelectric

storage has accounted for around 127 GW, more than 99% of bulk storage capacity

in the world in 2012. With 22 GW of capacity installed, pumped hydroelectric is

also a common energy storage method in the United States. When the wind speed is

high, the hydroelectric plant will store the extra energy by pumping water to a high

storage reservoir, and use the water under the condition that the wind resource is

low.

Another promising form of storage for wind energy is compressed air. The

compressed air energy storage system would convert wind energy into compressed

air which can be used to generate electricity when there is not enough or no wind

resource. However, no matter pumped hydroelectric or compressed air storage, it has

specific topography and geology requirements [122].

We can also use batteries to store the extra generated electricity from wind

farms, and uncharge them to generate power during low wind periods. Although

battery technology has recently been considered for most utility-scale applications, it

is only widely used for small-scale energy storage.
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1.2 Electric Power System

An electric power system is a real-time energy delivery network, used to gen-

erate, transmit and utilize electric power, which could be divided into the following

major subsystems [38]:

• Generation Subsystem

• Transmission and Subtransmission Subsystem

• Distribution Subsystem

• Utilization Subsystem

According to [18], Figure 1.4 illustrates the basic electrical components of

an electric power system, although a full scale actual power network is more com-

plex. The power system starts with generation subsystem, where electrical energy

is produced in the power plant by either fossil fuels (coal, natural gas or petroleum)

or renewable energy (biomass, solar or wind) and then transferred through step-up

transformers to a high voltage level, which is more suitable for long distance trans-

mission. In the transmission subsystem, the high voltage power lines would efficiently

transport electrical energy from power plants to power loads over long distances. After

that, the high voltage electrical energy is transformed to a lower voltage level in the

substations, which could be transmitted over distribution network. The utilization

subsystem would finally transform the energy in distribution power lines into differ-

ent appropriate voltage level and transport to its destinations, such as residential,

commercial and industrial consumption.
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Figure 1.4: Power system structure

1.2.1 Transmission and Distribution Subsystems

The interconnected transmission and distribution network, known as “power

grid” in the United States, transports and distributes the electrical energy produced

in power plants to different consumers. According to [16], the generator voltage is

around 11 to 30 kV, which is not appropriate for the transmission over long distances

due to low energy efficiency. Therefore, step-up transformers are used to increase the

voltage level. On the basis of established standard transmission voltages by Ameri-

can National Standards Institute (ANSI), transmission voltage lines operating at less

than 230 kV are standardized at 34.5 kV, 46.0 kV, 69.0 kV, 115.0 kV, 138.0 kV, 161.0

kV, categorized into high voltage and the transmission voltages between 230.0 kV and

765.0 kV are referred to as extra-high voltage (EHV) [129]. The ultra-high voltage

(UHV) represents a standardized transmission voltage of 1100.0 kV. The high volt-

age transmission lines are terminated in high-voltage substations, which first reduce
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the voltage to some lower level. Subtransmission lines connect the high-voltage sub-

stations with the distribution substations, constituting the subtransmission network.

The voltage is further reduced at the distribution substation. Note that some very

large industrial consumers or railroads may be served directly from the subtransmis-

sion subsystem.

Finally, the electric energy is delivered through distribution subsystem, which

carries electricity from the distribution substations to other consumers. Smaller in-

dustrial or commercial customers could be served by the primary distribution lines at

the voltage levels of 4 to 34.5 kV. Residential customers normally utilize the electrical

energy through the secondary distribution network which further reduces the voltage

to the levels of 120/240 V.

1.2.2 High-voltage Direct Current Lines

High-voltage direct current (HVDC) lines are used to transmit bulk of electri-

cal energy over long distances, by use of direct current (DC) in contract to the more

common alternating current (AC). Since there is no need for reactive compensation,

the HVDC lines would usually lose less power than equivalent AC transmission lines.

This higher efficiency makes HVDC more economical than AC transmission for large

amounts of power transmission over long distances, in addition to its lower transmis-

sion line costs. Moreover, HVDC transmission can improve system stability because

it not only could allow the operator to quickly change the direction of power flow, but

also allow the power transportation between power systems with different frequencies.
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A well-known HVDC system is the Pacific HVDC Intertie, connecting southern Cal-

ifornia with Oregon. The underwater HVDC cables have been built to interconnect

England and France.

Today, we are witnessing the transition from fossil fuels to renewable energy

sources, and how to exploit the full potential of massive wind and solar farms is

critical. The characteristic of HVDC allowing operators to control the power flow,

makes HVDC more appropriate for connecting renewable sources such as wind and

solar because it could mitigate the effects of intermittency and fluctuation and smooth

the power outputs. Besides, the lower transmission cost by HVDC would further

improve the renewable energy competence against other energy sources to reduce the

demand for fossil fuels. Therefore, HVDC plays a crucial role in the development of

future energy system based on renewables. In the U.S., Clean Line Energy Partners is

developing four large transmission projects to transmit wind and solar energy in long

distance by utilizing HVDC technology. The European Commission also advocated

and supported the construction of HVDC to interconnect some countries in Europe,

and to link offshore wind farms.

1.3 Review of Power Flow and Optimal Power Flow Models

1.3.1 Power Flow

Power flow, also known as load flow, is an evaluation tool to determine the

steady-state complex voltages and powers at every node of the network and all the

transmission lines [108]. That means, the solution to power flow problem would show
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the current, voltage, real and reactive power flow of all the buses. The buses or nodes,

connected to generators and loads, are interconnected by transmission lines. Due to

the nonlinear relationship between voltage and current, real and reactive power at

each bus, the power flow problem is a nonlinear problem. Power flow analysis is an

essential part of most studies in system planning and operation.

1.3.1.1 Basic Formulation

According to Kirchhoff’s Current Law (KCL), the sum of currents flowing into

a node should be the same as the sum of currents flowing out of that node, hence the

relationship between current and voltage at a node j can be described as followings:

Ij =
N∑
k=1

YjkVk, (1.1)

where Ij is the net injected current at node j, Vk is the voltage at node k, and Yjk is

an element of the admittance matrix. Since the complex power S = V IH (IH is the

Hermitian transpose of I), the power flow equations at node j are:

Pj + iQj = Vj

N∑
k=1

Y H
jk V

H
k , (1.2)

where Pj and Qj represent the net injected active and reactive power at node j

respectively, V H
k is the Hermitian (complex conjugate) transpose of the voltage at

node k, and i is the imaginary unit. If we use the polar coordinates, the complex

voltage at node j can be expressed as:

Vj = |Vj|∠θj, (1.3)
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where |Vj| and θj are the voltage magnitude and angle at node j respectively. Thus

the mathematical formulation of power flow in polar form could be expressed as:

PGj − PLj =
N∑
k=1

|Vj||Vk| [Gjk cos(θj − θk) +Bjk sin(θj − θk)] , (1.4a)

QGj −QLj =
N∑
k=1

|Vj||Vk| [Gjk sin(θj − θk)−Bjk cos(θj − θk)] , (1.4b)

where PGj and QGj denote the real and reactive power output of the generator con-

necting to bus j, PLj and QLj denote the real and reactive power load at bus j, |Vj|,

|Vk|, θj and θk are the voltage magnitudes and angles at bus j and k respectively, Gjk

and Bjk are the conductance, susceptance between bus j and bus k. The left-hand

side of equations (1.4a) and (1.4b) represent the power injections at bus j, which

means Pj = PGj − PLj and Qj = QGj −QLj .

In contrast, if we express the complex voltage in rectangular form,

Vj = ej + ifj, (1.5)

where ej = |Vj| cos θj and fj = |Vj| sin θj, the corresponding power flow equations in

rectangular form are:

PGj − PLj =
N∑
k=1

[ej(ekGjk − fkBjk) + fj(fkGjk + ekBjk)] , (1.6a)

QGj −QLj =
N∑
k=1

[fj(ekGjk − fkBjk)− ej(fkGjk + ekBjk)] . (1.6b)

1.3.1.2 Bus Types and Solvability

In the formulation of power flow problem, four quantities are associated with

each bus: real power P , reactive power Q, voltage magnitude |V | and voltage angle

θ [81, 137, 51].
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• Load Bus(P -Q bus): For this type of bus, there is no generator connected

to it generally. The special case could be a bus connected with a generator,

however the power output of which is constant. Furthermore, the real power P

and reactive power Q are known from available measurements, but the voltage

magnitude |V | and angle θ are unknown.

• Generator Bus(P -V bus): The bus is connected with a generator. In this case,

the real power P and the magnitude of voltage |V | are specified, but the reactive

power and the nodal voltage angle θ are computed.

• Slack Bus: This is also known as the reference bus, or the swing bus where the

voltage magnitude |V | and voltage angle θ are known. The real power P and

reactive power Q are unspecified. Since the transmission losses are unknown

in advance of the power flow calculation, this sort of bus is used to provide

additional real and reactive power so as to balance the power system. Hence, it

is usually a generator related bus. The voltage angle at the slack bus is generally

chosen to be zero, as a reference for calculation of the other voltage angles.

The power flow problem is to determine the values of all state variables (voltage

magnitude |V | and voltage angle θ) by solving the above power flow equations based

on specifications of other variables. Consider a system with N buses, where NG

represents the number of generator buses. Thus, we needN voltage magnitudes andN

voltage angle quantities to completely describe the state of this system. However, the

voltage magnitude and angle are known for the slack bus, and the voltage magnitudes

of generator buses are also given. Hence the unknown state variables are (2N−NG−
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2). From the generator buses, we only get NG balance equations regarding to active

power injections, and there are no power flow equations for the slack bus, thus in

total we also have (2N −NG − 2) equal to the number of unknowns, which serves as

a necessary condition for solvability.

Figure 1.5 gives a single line diagram of the IEEE 14-bus standard system,

consisting of 14 buses and 20 branches. Buses 1 and 2 have generators, and buses 3, 6

and 8 are synchronous compensators which are only used for reactive power support.

Based on the above bus classification, bus 1 serves as the slack bus, buses 2, 3, 6 and

8 are P -V buses, and the rest are P -Q buses in the system. Let us take bus 12 as

an example to demonstrate the power flow at that node. As a load bus, it does not

have a generator, which means the values of PG12 and QG12 should be equal to zero,

and the values of PL12 and QL12 should be prespecified. Besides, bus 12 only connects

with buses 6 and 13, and therefore the power flow equations at this node are like:

−PL12 =|V12||V6| [G12,6 cos(θ12 − θ6) +B12,6 sin(θ12 − θ6)] +

|V12||V13| [G12,13 cos(θ12 − θ13) +B12,13 sin(θ12 − θ13)] ,

−QL12 =|V12||V6| [G12,6 sin(θ12 − θ6)−B12,6 cos(θ12 − θ6)] +

|V12||V13| [G12,13 sin(θ12 − θ13)−B12,13 cos(θ12 − θ13)] .

1.3.2 Solutions to Power Flow Problem

The basic methods to solve the nonlinear power flow equations can be catego-

rized into:

• Gauss-Seidel Method
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Figure 1.5: IEEE 14-bus test system

• Newton-Raphson Method

• Decoupled Method

• DC Power Flow Method

The Gauss-Seidel method is designed to find solution of a nonlinear system of equa-

tions by a series of iterations. It uses the most recent guess of solution to compute new

solution values. Glimn and Stagg [47] were the first to use the Gauss-Seidel method

to solve the power flow problem, followed by Brown and Tinney [20]. Although the

Gauss-Seidel method requires small storage space, it exhibits poor convergence and

even sometimes it does not converge despite of the existence of a solution.

The generalized Newton-Raphson method is also an iterative algorithm that

is able to solve a nonlinear system of equations with the same of amount of variables.
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At each iteration, each function in the system is approximated by its tangent hyper-

plane with Jacobian matrix. The Newton-Raphson method applied to the power flow

equations were put forward and developed in [118, 36, 90, 109]. Due to its property of

quadratic convergence, the Newton-Raphson method could efficiently solve the power

flow problem, and become well established over the electric power system industry.

The decoupled methods was first proposed in 1970s [110, 111], and the fast

decoupled version of [111] was further improved in [123, 84]. In power systems, a

strong coupling between real power P and voltage angle θ, as well as between reactive

power Q and voltage magnitude |V | is commonly observed. However, the coupling

between “P − θ” and “Q − V ” components of the problem is relatively weak [113].

Hence the essential idea of the decoupled methods is separately solving the “P − θ”

and “Q− V ” problems, by taking advantage of the physical properties exhibited by

electric power system being solved. As a result, the number of entries in Jacobian

matrix is only half of the those used in the Newton-Raphson method, and Jacobian

elements are voltage independent.

In real power dispatch or power market analysis, there is a need that power

flow equations can be solved fast, however, the requirement of calculation accuracy is

not very high. The DC power flow, is a simplification of the AC power flow equations

presented in Section 1.3.1.1 by only restricting on MW flows, and neglecting the

reactive power and voltage magnitude components. Three basic assumptions are

used to derive DC power flow equations, which are listed as follows [137, 76]:

1. The resistance for each branch is ignored.
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2. All the voltage magnitudes are equal to some base voltage V0.

3. The voltage angle difference on the two ends of the branch is sufficiently small,

so that cos(θj − θk) ≈ 1 and sin(θj − θk) ≈ θj − θk.

Give the above assumptions, the power flow equations are simplified into a linear

problem, i.e., the DC power flow problem [92, 130].

1.3.3 Optimal Power Flow Problem

The optimal power flow (OPF) problem was first introduced by Carpentier [26]

as an extension of conventional economic dispatch problem, to find the optimal set-

tings of a given power system. In conventional power flow problem, the objective

is to determine the steady-state complex voltages and powers of the network, with

specified values of control variables. In contrast, the OPF problem is to optimize

a prespecified objective while satisfying the system operating constraints, such as

power flow equations, system security and physical limits, over certain control vari-

ables with unspecified values. The OPF plays a crucial role in power system operating

and planning.

The general OPF formulation can be described as follows:

min f(x,u) (1.8a)

s. t. h(x,u) = 0, (1.8b)

g(x,u) ≤ 0, (1.8c)

where u is the vector of control variables, such as active and reactive power generation

and x is the vector of state variable, f(x,u) is an objective function, h(x,u) is the
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power flow equations (such as (1.4a) and (1.4b)), and g(x,u) represents the limits on

control variables and functional operating constraints on other variables.

There are many different ways to define an objective function for OPF, and

therefore the selection of it may depend on the operating philosophy of the analyzed

electric power system. As one of the most commonly used objective function in

OPF, the power generation cost is generally represented by a nonlinear, second-order

polynomial:

f(x,u) =
∑
j

(aj + bjPGj + cjPGj
2). (1.9)

The inequality constraints (1.8c) may include limits on control variables, line security

constraints and other associated system operating constraints. Among those, the

following inequality constraints are simple and widely used:

PGj
≤PGj ≤ PGj , , (1.10a)

Q
Gj
≤QGj ≤ QGj

, (1.10b)

V j ≤|Vj| ≤ V j. (1.10c)

Thus, we can formulate a specific optimal power flow problem in polar form with

objective (1.9), constraints (1.4a)-(1.4b), and constraints (1.10a)-(1.10c).

1.3.4 Solutions to Optimal Power Flow Problem

Since the OPF problem was introduced in the early 1960s, extensive research

has been put on it and numerous efficient solution techniques have been devel-

oped, including linear programming, quadratic programming, nonlinear program-

ming, Newton-based method, interior point method, heuristic methods and recent
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convex relaxation methods. Extensive surveys can be found in [56, 82, 83, 88, 94, 41,

42].

Linear programming: Wells [128] first developed a linear programming ap-

proach to solve economic dispatch with security constraints by use of simplex method

to the linearization of objective function and constraints. In the following years, a lot

of research [114, 112, 5] was done in this category.

Quadratic programming: the sequential quadratic programming method was

presented in [22]. Momoh [80] proposed a generalized quadratic model and Grudinin

[54] employed successive quadratic programming method to solve a reactive power

optimization.

Nonlinear programming: Dommel and Tinney [35] made a remarkable progress

and first successfully solved the OPF with gradient method in 1968. Further research

with nonlinear programming technique included [6, 138].

Newton-based method: an early version of Newton-based algorithm applied to

OPF problem was found in [98], and an improved Newton-based method was proposed

by Sun et al. [116]. Recent developments included [29, 119]

Interior point method: based on the primal-dual logarithmic barrier method,

Granville [50] developed an algorithm to solve the optimal reactive power dispatch

problem. The predictor-corrector interior point technique could be found in [132,

127, 120], and multiple-centrality corrections technique was employed in [25]. Min

and Shengsong [78], Sousa et al. [107] presented trust-region based interior point

method for OPF problems.
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Heuristic methods: a genetic algorithm for solving large-scale economic dis-

patch problem was presented in [28], and to solve optimal power flow problem with

FACTS devices, Chung and Li [30] proposed a hybrid genetic algorithm. Applica-

tion of evolutionary algorithm into OPF could be found in [135, 104]. Yoshida et al.

[134] applied the particle swarm optimization method for reactive power and voltage

control, and Abido [2] considered a particle swarm optimization approach for OPF

problem. A modified particle swarm optimization for economic dispatch problem was

found in [89].

Recent convex relaxation: a common approximation method (DC OPF) to

OPF problem, was found in [111, 93, 115] which linearized the power flow equations.

Recently, Jabr [58] convexified the power flow problem over radial networks in the form

of second order cone programming (SOCP). However, the same convexification did not

hold for a meshed network. Another progress toward convexifying the OPF problem

was made by Bai and Wei [10], Bai et al. [12], which first formulated the OPF problem

as a semidefinite programming (SDP) problem. Although numerical experiments have

been shown in [58, 12], whether or under what conditions the convexifications turn

out to be exact has not been discussed. This was well studied in [68, 66, 67]. Lavaei

and Low [68] demonstrated that the SDP relaxation was exact if and only if the

duality gap was zero, and also showed that IEEE test bus systems with 14, 30, 57,

118 and 300 buses had no duality gap. Based on these work, Bai and Wei [11], Jabr

[57] further simplified the SDP relaxation to exploit graph sparsity. Nonetheless,

the exactness of SDP relaxation for mesh networks were challenged by Bukhsh et al.
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[21], Lesieutre et al. [70] under certain cases. Phan [91] introduced a Lagrangian

dual problem for solving and a branch-and-bound algorithm in case that the strong

duality did not hold. In the basis of this work, Gopalakrishnan et al. [49] showed

SDP based branch-and-bound approach was better than the Lagrangian duality based

branch-and-bound.

1.3.4.1 OPF over Distribution (Tree) Network

Although OPF is traditionally solved for transmission networks, it is also be-

coming increasingly crucial for distribution networks. Farivar et al. [40] studied a

SOCP relaxation of a multi-timescale optimal Volt/VAR control problem, which was

proved to be exact provided load over satisfaction was allowed. Similar proofs for ex-

actness of SDP or SOCP relaxation for OPF problem over radial networks under the

condition of load over satisfaction could be found in [19, 136, 106], among which So-

joudi and Lavaei [106] used a simpler argument. Another type of sufficient conditions

for the exactness of SOCP relaxation was discussed in [71, 44, 43], which required the

upper bounds of voltage magnitudes not binding. Based on [136], Lavaei et al. [69]

proved the tightness of SDP or SOCP relaxation given the voltage angles across each

line was sufficiently small.
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CHAPTER 2
RISK-AVERSE STRATEGIC PLANNING OF HVDC RENEWABLE

ENERGY GRIDS

2.1 Introduction

The advantages of wind energy as a renewable and commonly available source

of energy come at a cost of uncertainty in the amount of wind energy that can be

produced during any given time period. In this respect, energy production from re-

newable sources differs drastically from the traditional energy production from fossil

sources, whose reserves can be accurately estimated and utilized in a controlled man-

ner. As a result, the design and operation of the existing power infrastructure, which

implicitly relies on the presumption that energy production is completely controllable,

may not be ideally suited for the case when a significant portion of generated and

consumed energy comes from renewable sources, such as wind.

In this chapter, we consider the problem of strategic design and operation of

energy grids that are based exclusively on wind energy sources, and the primary issue

that we aim to elucidate is the problem of effective control of risks of power shortages

due to the uncertainties in wind energy production and power demands. Specifically,

the question of interest is whether risk-averse planning of energy grid can be effective

in hedging the risks of power shortages due to stochastic variations in energy gener-

ation and demand. To this end, we formulate the problem of strategic design and

operation of renewable energy grid as a stochastic wind farm location problem, where

the risks of unsatisfied power demands due to uncertainties in power generation are
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quantified by means of a class of (generally nonlinear) statistical functionals known

as coherent measures of risk and are minimized through optimal selection of sites for

wind energy harvesting and matching of energy producers and customers.

We consider our analysis to be at the strategic level as it pertains to planning

and operation at the relatively long-term monthly scale with respect to the power

generation and demand. The assumption that all energy demand within the grid is

served by renewable wind energy sources implies that these sources must represent

large-scale, massive wind farms. In addition, we assume that the generated electricity

is transmitted to demand nodes through high-voltage direct current (HVDC) lines.

HVDC transmission lines are used to transmit bulk of electrical energy over long dis-

tances by means of direct current (DC), in contrast to the more common alternating

current (AC) used in most of today’s electrical transmission infrastructure. Since

there is no need for reactive compensation along the transmission line, the HVDC

lines typically lose less power than equivalent AC transmission lines. This, in addition

to lower transmission costs, makes HVDC more economical than AC transmission for

large amounts of power transmitted over long distances. Moreover, HVDC transmis-

sion can improve system’s stability since it allows the operator to quickly change the

direction of power flow, as well as allows for the power transportation between power

systems with different frequencies. These characteristics of HVDC transmission make

it an appealing choice for renewable energy grids with wind or solar energy sources,

as it could aid in mitigating the effects of intermittency and fluctuation and smooth

the power outputs, as well as improve the economic viability of renewable energy due
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to lower transmission costs.

The problem of configuration of power generating systems with renewable en-

ergy and storage has been extensively studied. In [102], a genetic algorithm has been

proposed to determine the optimal configuration of power system in isolated island

with installed renewable energy power plants. Katsigiannis and Georgilakis [61] per-

formed tabu search to solve a combinatorial problem which aimed to optimize sizing

of small isolated hybrid power systems. Similarly, Ekren and Ekren [37] applied simu-

lated annealing method for achieving the optimal size of a PV/wind integrated hybrid

energy system with battery storage. In addition to these heuristics methods, stochas-

tic programming models have also been employed to design the energy system. Abbey

and Joós [1] put forward a stochastic mixed integer programming model to optimize

sizing of storage system for an existing isolated wind-diesel power system. In [65],

a multi-stage stochastic mixed integer programming model has been presented for a

comprehensive hybrid power system design by including renewable energy generation.

More particularly, Burke and OMalley [23] considered the problem which sought to

find the optimal locations to incorporate wind capacity on an existing transmission

system network. A portfolio approach to decide optimal wind power deployment in

Europe has been studied in [97], which endeavored to smooth out the fluctuations

through geographic diversification of wind farms.

The uncertainties of classic facility location problem have been dealt with by

different criteria, such as optimizing expected performance, or optimizing the worst-

case performance. Daskin et al. [34] proposed a model called the α-reliable minimax



www.manaraa.com

27

regret model, which essentially minimized the α-quantile of all regrets. Chen et al.

[27] established a model called α-reliable mean-excess regret that instead minimized

the expected regret of the “tail”. The aim of this chapter is to develop stochastic

programming models combined with various risk measures to determine the optimal

locations and operation of wind farms in HVDC renewable energy grids.

The remainder of this chapter is organized as follows. In Section 2.2, we

formulate three stochastic wind farm location models with different degrees of risk

aversion. Branch-and-bound solution algorithms for the resulting mixed-integer linear

and nonlinear programming problems, which employ Benders decomposition method

and outer polyhedral approximations of nonlinear constraints are presented in Section

2.3. Section 2.4 discusses dataset generation, computational results and corresponding

solution analysis.

2.2 Stochastic Wind Farm Location Models

In this section, we introduce several stochastic models that address the prob-

lem of strategic location of wind farms so as to satisfy the power demand at a given

set of demand sites at a minimum cost. In all models, it is assumed that the power

demand and energy generation are uncertain, or stochastic. To model these sources

of uncertainty, we pursue the scenario-based approach traditional to stochastic pro-

gramming, i.e., we assume that the set of random events Ω in the probability space

(Ω,F ,P) is discrete, Ω = {ω1, . . . , ωK}, where each elementary random event, or

scenario ωk has a non-zero probability P{ωk} = qk > 0, such that
∑

k qk = 1.
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Below we introduce a generic stochastic model (GS) that allows for satisfying

the expected demand in each bus (demand node) of the power grid. To this end, we

introduce the following notations:

i : index of demand nodes;

j : index of candidate sites of wind farms;

k : index of scenarios;

h : number of wind farms to locate;

γ : cost of power shortages;

λ : annual amortized cost per mile of HVDC transmission line built;

M : an upper bound on the number of wind turbines that can be installed at a given

candidate site; for simplicity, it is assumed to be constant across all sites;

fj : annual amortized fixed cost of wind farm site j;

cj : annual amortized cost of per turbine purchased and installed at site j;

qk : probability of scenario k

dij : distance from node i to candidate site j;

Kjk : capacity of wind turbine in candidate site j under the scenario k;

Dik : demand at node i under the scenario k;

Di : expected power demand at node i.
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Also, we define the following decision variables:

xj : binary variable indicating whether wind farm site j is selected;

yij : binary variable indicating whether demand node i is connected to wind farm

site j;

ζij : number of turbines at wind farm site j serving demand node i;

pijk : power generated at wind farm site j serving demand node i under scenario k.

2.2.1 A Generic Stochastic Model for Strategic Wind Farm Location

Using the introduced above notations, a generic stochastic model for strategic

wind farm location under uncertainties (GS) can be presented in the form of a mixed-

integer linear programming problem:

min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij (2.1a)

s. t.
∑
j

xj = h, (2.1b)

yij ≤ xj, ∀i, j, (2.1c)

ζij ≤Myij, ∀i, j, (2.1d)

pijk ≤ Kjkζij, ∀i, j, k, (2.1e)∑
k

qk
∑
j

pijk ≥ Di, ∀i, (2.1f)

xj, yij ∈ {0, 1}, ζij ∈ Z+, pijk ∈ R+, ∀i, j, k. (2.1g)

The objective function (2.1a) represents the cumulative annual cost to be minimized.

Constraint (2.1b) stipulates that exactly h wind farms are to be located. Con-
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straint (2.1c) states that a demand node i cannot be assigned to a wind farm j unless

a wind farm is located at site j. Constraint (2.1d) limits the number of wind turbines

at site j that can be assigned for serving bus i. Constraint (2.1e) ensures that power

supplied by site j to bus i under scenario k is less than or equal to the total capacity

of all wind turbines assigned at site j to serving bus i. Constraint (2.1f) ensures that

the expected power supplied to bus i from all sites does at least meet the expected de-

mand at bus i. Lastly, constraint (2.1g) determines the values that decision variables

take, where Z+ and R+ denote the sets of non-negative integer and real numbers,

respectively. In what follows, the feasible set defined by constraints (2.1b)–(2.1g) is

denoted by P .

It is easy to see that the generic model (2.1) is prone to substantial power

shortages, which may occur in particular scenarios when the power demand at bus

i and/or the amount of energy supplied to this bus deviate from the corresponding

average figures. This is a consequence of the well-known properties of stochastic

optimization models where constraints are satisfied “on average” [63]. In order to

avoid power shortages, one may require that energy demands at each bus i are satisfied

for every scenario ωk ∈ Ω, which can be written as

max
k

{
Dik −

∑
j

pijk

}
≤ 0, ∀i. (2.2)

This method, also known as “robust optimization” approach [62], has been acknowl-

edged in the literature as such that can often lead to overly conservative and ex-

ceedingly costly solutions [63]. In addition, enforcing the last constraint does not

guarantee shortage-free power distribution in practice, since the scenario data repre-
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sents only a finite sample from the generally unknown distributions of power demand

and wind energy generation.

In this work, we pursue a risk-averse stochastic optimization approach which is

supposed to avoid the potentially large power shortages associated with the expected-

value constraint (2.1f) as well as the high costs associated with the “robust” con-

straints (2.2) by explicitly accounting for the risks of power shortages.

2.2.2 Risk-averse Models for Strategic Wind Farm Location

To quantify the risk of power shortages that may have large magnitudes but

very low probabilities of occurring, we employ a class of statistical functional known

as coherent measures of risk [9], and, more specifically, the well-known Conditional

Value-at-Risk (CVaR) measure [96] and its nonlinear generalizations, Higher Moment

Coherent Risk (HMCR) measures [64].

Technically, a risk measure is a function ρ : X 7→ R, where X is an appropri-

ately defined linear space of F -measurable functions X : Ω 7→ R. Further definition

of risk measures ρ(X) typically requires specifying whether the larger or smaller re-

alizations of random element X are considered to be “risky”. Here we adopt the

setup common in engineering literature, where the random variable X = X(x, ω) is

assumed to represent the cost or loss associated with the decision x, and thus smaller

realizations of X are preferred (the alternative assumption, that X represents payoff

or reward is prevalent in economics and finance domains).

Then, ρ(X) as defined above is said to be a coherent measure of risk [9, 63] if



www.manaraa.com

32

it satisfies the additional properties of monotonicity, ρ(X1) ≤ ρ(X2) for all X1 ≤ X2;

sub-additivity, ρ(X1 +X2) ≤ ρ(X1)+ρ(X2); positive homogeneity, ρ(λX) = λρ(X) for

a constant λ > 0; and translation invariance, ρ(X+ c) = ρ(X)+ c for any c ∈ R. The

monotonicity property asserts that smaller losses bear less risk. The sub-additivity

property in combination with positive homogeneity provides for convexity of coherent

risk measures, which entails that coherent measures of risk allow for risk reduction via

diversification, and, importantly, admit efficient optimization of risk via the methods

of convex programming. The translation invariance property allows for efficient risk

hedging, see [9] for a detailed discussion.

From this definition, it is easy to see that the risk measure defined as ρ(X) =

EX is coherent. Hence, if one defines the stochastic cost/loss function X as the

energy shortage at site i, Xi(ωk) = Dik −
∑

j pijk, then constraints (2.1f) stipulating

that power demand at each bus i must be satisfied on average, can equivalently be

interpreted as the requirement of non-negative risk of power shortages at each bus i,

ρ(Xi) ≤ 0, ∀i. (2.3)

Similarly, another trivial instance of coherent measures of risk is represented

by the “maximum loss” measure, ρ(X) = maxX, which associates the risk of a

stochastic loss or cost X with its largest possible realization (it is assumed here that

the distribution of X has a bounded support, in the general case the maximization

operator in the definition of this risk measure must be replaced with the essential

supremum, ρ(X) = ess supX, see, e.g., [63] for details). Then, the conservative-

but-costly approach of ensuring that power demands are satisfied at every scenario,
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embodied by constraints (2.2), reduces to the risk constraints of the same form (2.3)

where ρ is selected as the maximum loss measure.

In order to find, as we have proposed above, an effective – both methodologi-

cally and computationally – compromise between the “loose”, risk-neutral expectation-

based constraints (2.1f) and the most conservative risk-averse constraints (2.2), we

will employ the well-known Conditional Value-at-Risk (CVaR) measure [96]. For a

given confidence level α ∈ (0, 1), Conditional Value-at-Risk CVaRα(X) can be inter-

preted as the expected cost or loss that can occur with probability 1 − α over the

prescribed time horizon, or as the average of the (1−α) · 100% of the largest (worst)

realizations of the stochastic loss factor X. This interpretation is reflected in the fact

that for continuously distributed X, CVaRα(X) can be represented in the form of the

conditional expectation

CVaRα(X) = E[X | X ≥ F−1
X (α)], (2.4)

where FX(t) denotes the cumulative distribution function of X, and F−1
X (α) is the α-

quantile of X, or such a deterministic value that can be exceeded by X with probabil-

ity 1−α (in financial and risk management literature it is also known as Value-at-Risk

with confidence level α, VaRα(X)).

In the case of general distributions of X, definition (2.4) does not apply, in the

sense that the corresponding conditional expectation is not guaranteed to have coher-

ence properties [96]. It has been shown in [96] that in the general case CVaRα(X) can

be represented as a convex combination of F−1
α (X) and the conditional expectation of

losses strictly exceeding F−1
α (X), with weight coefficients dependent on both X and α.
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A more computationally attractive definition of CVaR for general loss distributions

presents it as the optimal value of the following unconstrained convex optimization

problem [95, 96]:

CVaRα(X) = min
η

η + (1− α)−1E(X − η)+, (2.5)

where X± = max{0,±X}. Besides being a coherent measure of risk, CVaRα(X)

possesses a number of other properties, such as, for example, continuity with respect

to the confidence level α. In the context of the preceding discussion, another notable

property of the CVaR measure is that, as a function of parameter α, it includes both

ρ(X) = EX and ρ(X) = ess supX as special cases:

lim
α→0

CVaRα(X) = EX, lim
α→1

CVaRα(X) = ess supX. (2.6)

Hence, to achieve a balance between the “risk-neutral” approach of ensuring that

power shortages do not occur on average, and the “absolute risk-averse” approach

requiring that power shortages never occur, one may quantify the risk of power

shortages using CVaR measure with an appropriately selected value of confidence

level α ∈ (0, 1), whereby the shortage risk would be represented by the average of

(1− α) · 100% largest shortages.

To incorporate the quantification of risks of power shortages in the wind

farm location model (2.1) via the Conditional-Value-at-Risk measure, we define the

cost/loss function X as the cumulative power shortage over all buses,

X(ωk) =
∑
i

(
Dik −

∑
j

pijk

)
+

. (2.7)
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In order to have an additional degree of flexibility in our model, we include CVaRα(X)

in the objective of problem (2.1) with an appropriate weight coefficient γ > 0, which

represents the cost (in millions of dollars) of 1MW of power short:

min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + γCVaRα(X)

s. t. xj, yij, ζij, pijk ∈ P ,

where X is defined by (2.7). Note that the cost of shortages in the objective function

is non-negative due to the fact that X(ωk) ≥ 0 in (2.7). By further defining auxiliary

variables Uk and η, the risk-averse, CVaR-based stochastic model (CVaRS) can be

formulated as follows:

min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + γ

(
η +

1

1− α
∑
k

qkUk

)
(2.8a)

s. t. Uk ≥
∑
i

(
Dik −

∑
j

pijk

)
+

− η, ∀k, (2.8b)

Uk ∈ R+, ∀k, (2.8c)

xj, yij, ζij, pijk ∈ P . (2.8d)

By means of the Conditional Value-at-Risk measure, the risk-averse formula-

tion (2.8) accounts for the risk of power shortages as the first moment of the (1−α)-tail

of the shortages distribution. At the same time, the “risk” as a proxy for “large losses

that have low probability of occurring” is commonly associated in the risk manage-

ment literature with “heavy tails” of distributions, and the distributions of power

shortages are well known to be heavy tailed (see, e.g., [46, 31, 77]). Therefore, it is

of interest to take into account higher moments of shortage distribution in assessing



www.manaraa.com

36

the risk of power shortages. This can be accomplished by means of the family of

Higher-Moment Coherent Risk (HMCR) measures [64]. Assuming that the space X

admits a sufficient degree of integrability, i.e., X = Lp(Ω,F ,P) for a given p ≥ 1, the

HMCR measures are defined as

HMCRp,α(X) = min
η∈R

η + (1− α)−1‖(X − η)+‖p, p ≥ 1, α ∈ (0, 1), (2.9)

where ‖X‖p = (E|X|p)1/p. Obviously, the HMCR family contains CVaR as a special

case of p = 1.

Similarly to CVaR-based formulation (2.8), minimization of the total cost

that includes the shortage risk cost as expressed by a higher tail moment of shortage

distribution is given by the following HMCR-based stochastic optimization (HMCRS)

model:

min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + γ
(
η + (1− α)−1U0

)
(2.10a)

s. t. q
−1/p
k Uk ≥

∑
i

(
Dik −

∑
j

pijk

)
+

− η, ∀k, (2.10b)

U0 ≥
(
Up

1 + . . .+ Up
K

)1/p
, (2.10c)

U0 ≥ 0; Uk ≥ 0, ∀k, (2.10d)

xj, yij, ζij, pijk ∈ P . (2.10e)

Constraint (2.10c) represents a (nonlinear) p-order cone constraint, whence formula-

tion (2.10) represents a mixed-integer p-order cone programming (MIpOCP) problem.

The next section discusses the solution methods for the proposed risk-averse stochas-

tic wind farm location models CVaRS (2.8) and HMCRS (2.10), as well as their
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special case, the risk-neutral GS model (2.1).

2.3 Benders Decomposition Based Branch-and-Bound Algorithms

2.3.1 General Formulations

The discussed formulations of GS andf CVaRS models can generally be written

as mixed-integer linear programming programming problems of the form

Z = min a>z + b>u (MILP)

s. t. Az + Bu ≤ c,

z ∈ Z ⊂ Zn+, u ∈ Rm
+ ,

where z and u represent an n-dimensional vector of integer variables and an m-

dimensional vector of continuous variables, and Z is a bounded subset of Zn+. Assume

that problem MILP is bounded and feasible. Then, it can equivalently be represented

as

Z = min a>z + t(z) (2.11a)

s. t. z ∈ Z, (2.11b)

where for any given z ∈ Z, function t(z) is defined to be the optimal objective value

of the linear programming problem

t(z) = min b>u (2.12a)

s. t. Bu ≤ c−Az, (2.12b)

u ≥ 0. (2.12c)
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Note that since set Z ⊂ Zn+ is bounded, the unboundedness of the original problem

MILP is associated with that of problem (2.12). By introducing dual variables ξ,

we can calculate t(z) through solving its dual problem, under the assumption of

boundedness of problem (2.12). The dual of problem (2.12) is

t(z) = max (c−Az)>ξ (SMILP)

s. t. B>ξ ≤ b,

ξ ≤ 0.

If the feasible region of problem SMILP is empty, then the primal subproblem (2.12) is

either unbounded or infeasible, which implies the unboundedness or infeasibility of the

original problem MILP. Otherwise, we can enumerate all extreme points (ξ1
p, . . . , ξ

I
p),

and extreme rays (ξ1
r , . . . , ξ

J
r ) of the feasible region of SMILP, where I and J denote

the numbers of extreme points and extreme rays. Therefore, the dual subproblem

SMILP can be rewritten as

t(z) = min t (2.13a)

s. t. (c−Az)>ξjr ≤ 0, ∀j = 1, . . . , J, (2.13b)

(c−Az)>ξip ≤ t, ∀i = 1, . . . , I, (2.13c)

t ∈ R. (2.13d)
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By replacing t(z) in problem (2.11) with that given by formulation (2.13), we obtain

a reformulation of the original problem MILP:

min a>z + t (RMILP)

s. t. (c−Az)>ξjr ≤ 0, ∀j = 1, . . . , J,

(c−Az)>ξip ≤ t, ∀i = 1, . . . , I,

z ∈ Z, t ∈ R.

We denote problem RMILP but only with a subset of constraints (2.13b) and (2.13c)

as problem MMILP, representing the master problem of mixed-integer linear program-

ming problem MILP.

The standard Benders decomposition scheme is then invoked, which consists

in solving the “relaxed” problem MMILP (as usual, the procedure is initialized by

solving MMILP without any constraints (2.13b) and (2.13c) and the variable t in its

objective disregarded). If it is unbounded, let ξ∗r be the column vector in which all the

corresponding simplex multipliers are negative, after simplex terminates. Therefore,

ξ∗r is an extreme ray of the feasible region of SMILP, whence a feasibility cut

(c−Az)>ξ∗r ≤ 0 (2.14a)

is added to MMILP and the problem is thus resolved until an optimal solution (z∗, t∗)

of MMILP is obtained. Subsequently, the dual subproblem SMILP is solved for the

given z∗, and let ξ∗p be the corresponding optimal solution, or an extreme point of

its feasible region. If t(z∗) = (c−Az∗)>ξ∗p > t∗, then problem MMILP is augmented
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with the optimality cut

(c−Az)>ξ∗p ≤ t (2.14b)

and resolved.

The decomposition procedure stops when the condition t(z∗) = t∗ is satisfied.

During each iteration, a feasibility or optimality cut is added, and an optimal solution

of RMILP is obtained in a finite number of iterations due to finiteness of I and J [15].

The following two propositions follow readily from the above discussion.

Proposition 1. If z̃ ∈ Z and there is an optimal solution to the dual subproblem

SMILP with objective value t̃ = max{(c−Az̃)>ξ : B>ξ ≤ b, ξ ≤ 0}, then a>z̃ + t̃ is

an upper bound on the optimal solution value of problem RMILP.

Proof. If there is an optimal solution to the dual subproblem SMILP, by strong duality

min
{
b>u : Bu ≤ c−Az̃,u ≥ 0

}
= max

{
(c−Az̃)>ξ : B>ξ ≤ b, ξ ≤ 0

}
= t̃.

Assume ũ is an optimal solution to the linear program min{b>u : Bu ≤ c−Az̃,u ≥

0}, then (z̃, ũ) is a feasible solution to the original problem MILP. Therefore, a>z̃+t̃ =

a>z̃ + b>ũ is the objective value of a feasible solution to problem MILP. Because

problem RMILP is equivalent to problem MILP, a>z̃+ t̃ is also an upper bound on the

optimal value of the problem RMILP.

Proposition 2. Assume that (z∗, t∗) is an optimal solution of the master problem

MMILP. If the optimal objective value of the corresponding problem SMILP is equal to

t∗, i.e., t∗ = max{(c−Az∗)>ξ : B>ξ ≤ b, ξ ≤ 0}, then (z∗, t∗) is an optimal solution

to the equivalent reformulation of the original problem RMILP.
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Proof. For each iteration, we solve problem MMILP, which is essentially a “relaxed”

problem of problem RMILP, with a subset of constraints (2.13b) and (2.13c), so the

corresponding objective value a>z∗+t∗ is a lower bound of problem RMILP. According

to Proposition 1, since we have z∗ ∈ Z and the subproblem SMILP has an optimal

objective value t̃, a>z∗ + t̃ is an upper bound of the problem RMILP. Thus, if t̃ = t∗,

the upper bound and lower bound of problem RMILP is equal. Accordingly, problem

RMILP obtains an optimal solution.

2.3.2 Benders Decomposition Based Algorithm for GS and CVaRS Models

In the following, we denote problems MMILP and RMILP with relaxed integral-

ity constraints (namely, z ∈ Z ⊂ Zn+ replaced by z ∈ conv(Z) ⊂ Rn
+) as problem MLP

and problem RLP, respectively. Furthermore, we define a node k in the branch-and-

bound tree by a triple (zk, z̄k, Zk) ∈ Z2n
+ × (R∪{+∞}), where (zk, z̄k) are the bounds

on z at node k and Zk is a lower bound on ZMLP(zk,z̄k). The problem MLP(zk, z̄k)

is defined as the problem MLP with added constraints zk ≤ z ≤ z̄k, and ZMLP(zk,z̄k)

is the corresponding optimal objective value. Similarly, for any ẑk ∈ Zn+ we denote

by SMILP(ẑk) by replacing the variable z with the value ẑk in problem SMILP, and

by ZSMILP(ẑk) the corresponding optimal objective value. In addition, we introduce Z

and N to denote the global upper bound on ZRMILP and the set of active branch-and-

bound nodes, respectively. The algorithm is described as follows (see Algorithm 2.1

for details).

Step 1 Initialize the set of active branch-and-bound nodes N with root node defined
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as (z0, z̄0, Z0), and global upper bound Z with positive infinity.

Step 2 Select and remove a node from the set N .

Step 3 Solve problem MLP(zk, z̄k).

Step 4 If the solution of problem MLP(zk, z̄k) is feasible and its optimal objective

value is less than the current global upper bound Z, go to Step 5; otherwise,

fathom this node and go to Step 2.

Step 5 Denote the optimal solution to problem MLP(zk, z̄k) by (ẑk, t̂k). If the values

of ẑk are all integers, go to Step 6; otherwise, branch on this node and go to

Step 2.

Step 6 Solve the problem SMILP(ẑk). If its optimal objective value equal to t̂k

obtained in Step 5, then update the global upper bound Z and incumbent

solution, and fathom this node; otherwise, go to Step 7.

Step 7 Check the solution status of problem SMILP(ẑk), if it is unbounded, then

add a feasibility cut to problem MLP(zk, z̄k), go to Step 3; otherwise, check

whether ZSMILP(ẑk) > t̂k, if it is true, then add an optimality cut to problem

MLP(zk, z̄k), go to Step 3.
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Algorithm 2.1 A Benders decomposition based branch-and-bound algorithm for GS

and CVaRS models

1: Set global upper bound Z := +∞; set Z0 := −∞.

2: Set z0
i := −∞, z̄0

i := +∞ for all i ∈ {1, . . . , n}; initialize node list N :=

{(z0, z̄0, Z0)}.

3: while N 6= ∅ do

4: Select and remove a node (zk, z̄k, Zk) from N .

5: Solve MLP(zk, z̄k).

6: if MLP(zk, z̄k) is feasible and ZMLP(zk,z̄k) < Z then

7: Let (ẑk, t̂k) be the optimal solution to MLP(zk, z̄k).

8: if ẑk ∈ Zp+ then

9: Solve SMILP(ẑk).

10: if ZSMILP(ẑk) = t̂k then

11: Z := ZMLP(zk,z̄k); update incumbent solution.

12: else

13: if SMILP(ẑk) is unbounded then

14: Add feasibility cut

15: end if

16: if ZSMILP(ẑk) > t̂k then

17: Add optimality cut

18: end if

19: end if

20: else
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Algorithm 2.2 A Benders decomposition based branch-and-bound algorithm for GS

and CVaRS models (continued)

21: Pick i0 in {i ∈ {1, . . . , n} : ẑki /∈ Z+}.

22: Let zi := zki , z̄i := z̄ki for all i ∈ {1, . . . , n}\{i0}.

23: Let z̄i0 := bẑki0c, zi0 = bẑki0c+ 1.

24: N := N ∪
{(

zk, z̄, ZMLP(zk,z̄k)

)
,
(
z, z̄k, ZMLP(zk,z̄k)

)}
.

25: end if

26: end if

27: Remove every node (zk, z̄k, Zk) ∈ N such that Zk ≥ Z.

28: end while

Proposition 3. The Benders decomposition based branch-and-bound algorithm for

GS and CVaRS models terminates with the upper bound Z equal to the optimal ob-

jective value of original problem MILP.

Proof. We have shown that problem RMILP is an equivalent reformulation of the

original problem MILP, thus we only need to prove that the algorithm would result in

the same objective value as that of problem RMILP. In order words, all that remains

to prove is that the sub-tree rooted at a fathomed node cannot contain an integer

feasible solution to problem RMILP whose objective value is strictly less than the cur-

rent incumbent integer solution. Denote by RLP(zk, z̄k) an instance of problem RLP

with additional constraints zk ≤ z ≤ z̄k, and let ZRLP(zk,z̄k) be its optimal objective

value. Note that a node is only fathomed in lines 6 and 10 in Algorithm 2.1. In
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line 6, node (zk, z̄k, Zk) is fathomed if MLP(zk, z̄k) is infeasible or if the condition

ZMLP(zk,z̄k) ≥ Z is satisfied. As it was indicated above, problem MLP and problem

RLP are linear relaxations of problem MMILP and problem RMILP respectively, and

hence MLP(zk, z̄k) is a relaxation of RLP(zk, z̄k), and one has ZRLP(zk,z̄k) ≥ ZMLP(zk,z̄k).

Also, if MLP(zk, z̄k) is infeasible, RLP(zk, z̄k) will also be infeasible. Similarly, an in-

teger feasible solution that is strictly better than the incumbent solution cannot exist

in the sub-tree rooted at such a node. In line 10, the node is fathomed because the

integer feasible solution to MLP(zk, z̄k) is also feasible to RLP(zk, z̄k) according to

Proposition 2, and thus it is the best integer feasible solution that can be found at

the sub-tree rooted at the fathomed node.

2.3.2.1 Feasibility Cuts for GS Model

The generic stochastic model GS (2.1) can be written in the form of problem

MILP, where the integer-valued vector z contains variables xj, yij, and ζij, and non-

negative vector u contains variables pijk. Then, the corresponding problem(2.11) has

the form

Z = min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij (2.15a)

s. t.
∑
j

xj = h, (2.15b)

yij ≤ xj, ∀i, j, (2.15c)

ζij ≤Myij, ∀i, j, (2.15d)

xj, yij ∈ {0, 1}, ζij ∈ Z+, ∀i, j, k, (2.15e)



www.manaraa.com

46

where function t(z) defined as the optimal objective of subproblem (2.12) is equal to

either 0 when the problem

t(z) = min 0 (2.16a)

s. t. pijk ≤ Kjkζij, ∀i, j, k, (2.16b)∑
k

qk
∑
j

pijk ≥ Di, ∀i, (2.16c)

pijk ≥ 0, (2.16d)

is feasible for the given values of ζij, or +∞ when (2.16) is infeasible. Obviously, if

ẑ = (x̂j, ŷij, ζ̂ij) is an optimal solution of (2.15) such that (2.16) has a feasible p̂ijk

for the given ζ̂ij, then (ẑ, û) = (x̂j, ŷij, ζ̂ij, p̂ijk) is an optimal solution of the original

problem (2.1). On the other hand, if (2.16) is infeasible, then the corresponding

ẑ should be eliminated from the feasible region of the master problem (2.15). In

accordance to the described above algorithm, this is accomplished by augmenting

(2.15) with feasibility cuts

∑
i

∑
j

∑
k

Kjkα̂ijkζij −
∑
i

Diβ̂i ≤ 0, (2.17)

where (α̂ijk, β̂i) is an extreme ray of the dual SMILP(ẑ) of problem (2.16), which takes

the form

t(ẑ) = max
∑
i

∑
j

∑
k

Kjkζ̂ijαijk −
∑
i

Diβi (2.18a)

s. t. αijk − qkβi ≤ 0, ∀i, j, k, (2.18b)

αijk, βi ≤ 0, ∀i, j, k. (2.18c)
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Clearly, no optimality cuts are added to (2.15) since (2.16) is a “feasibility”

subproblem.

2.3.2.2 Feasibility and Optimality Cuts for CVaRS Model

Analogously to above, the CVaRS model (2.8) can be reformulated in the form

(2.11)–(2.12) as follows

Z = min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + γt (2.19a)

s. t.
∑
j

xj = h, (2.19b)

yij ≤ xj, ∀i, j, (2.19c)

ζij ≤Myij, ∀i, j, (2.19d)

xj, yij ∈ {0, 1}, ζij ∈ Z+, t ∈ R, (2.19e)

with the subproblem (2.16) defined as:

t(ẑ) = min η +
1

1− α
∑
k

qkUk (2.20a)

s. t. pijk ≤ Kjkζ̂ij, ∀i, j, k, (2.20b)∑
k

qk
∑
j

pijk ≥ Di, ∀i, (2.20c)

wik ≥ Dik −
∑
j

pijk, ∀i, k, (2.20d)

Uk ≥
∑
i

wik − η, ∀k, (2.20e)

wik, pijk, Uk ≥ 0, ∀i, j, k. (2.20f)
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Let αijk, µi, βik, and θk be the dual variables associated with constraints (2.20b),

(2.20c), (2.20d) and (2.20e) respectively. Then, the dual of subproblem becomes

t(z) = max
∑
i

∑
j

∑
k

Kjkζ̂ijαijk −
∑
i

∑
k

Dikβik −
∑
i

Diµi (2.21a)

s. t. αijk − βik − qkµi ≤ 0, ∀i, j, k, (2.21b)

− θk ≤
1

1− α
qk, ∀k, (2.21c)

− βik + θk ≤ 0, ∀i, k, (2.21d)

−
∑
k

θk ≤ 1, (2.21e)

αijk, µi, βik, θk ≤ 0, ∀i, j, k. (2.21f)

If, for a given set of values ζ̂ij, where (x̂j, ŷij, ζ̂ij, t̂) is an optimal solution of (2.19),

problem (2.21) is unbounded, let (α̂ijk, β̂ik, µ̂i) be an extreme ray of the feasible region

of (2.21), such that
∑

i

∑
j

∑
k (Kjkα̂ijk)ζ̂ij −

∑
i

∑
kDikβ̂ik −

∑
iDiµ̂i > 0. Then,

the feasibility cut

∑
i

∑
j

∑
k

Kjkα̂ijkζij −
∑
i

∑
k

Dikβ̂ik −
∑
i

Diµ̂i ≤ 0, (2.22)

is added to the master problem. If, on the other hand, the optimal objective t∗ = t(ẑ)

of (2.21) is finite and such that t̂ < t∗, the following optimality cut is added to the

master: ∑
i

∑
j

∑
k

Kjkα̂ijkζij −
∑
i

∑
k

Dikβ̂ik −
∑
i

Diµ̂i ≤ t, (2.23)

where (α̂ijk, β̂ik, µ̂i) is an optimal solution of (2.21).
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2.3.3 HMCRS Model as a Mixed-Integer p-Order Cone Programming Problem

Due to the presence of p-order cone constraint in formulation (2.10),

U0 ≥ (Up
1 + . . .+ Up

K)1/p, (2.24)

the HMCRS model represents a mixed-integer p-order cone programming problem

(MIpOCP). Below we propose an algorithm for the MIpOCP HMCRS problem that

combines the Benders decomposition with a general branch-and-bound algorithm for

solving MIpOCP problems that was discussed in [126]. The idea of this method

involves solving a polyhedral approximation of the integer relaxation of MIpOCP

problem at each node of the BnB tree, and is based on the work of [124] for mixed

integer second order cone programming problems (MISOCP).

The polyhedral approximation of pOCP, or the relaxed MIpOCP problem, is

obtained by replacing nonlinear p-order cone constraints with their polyhedral ap-

proximations. It is crucial, however, that such a polyhedral approximation is “com-

pact” with respect to the number of facets, since a straightforward approximation

of a p-cone in RK+1 by tangent hyperplanes requires O(2K) facets. To this end, a

lifted representation of a multidimensional p-cone is used [126, 14], which expresses a

p-cone in RK+1
+ as an intersection of K − 1 three-dimensional p-cones:

U2K−1 = U0, UK+k ≥ (Up
2k−1 + Up

2k)
1/p, k = 1, . . . , K − 1. (2.25)

Then, it is easy to see that if each of the three-dimensional p-cones is replaced by its

polyhedral approximation with O(L) facets, the resulting polyhedral approximation of

multidimensional p-cone (2.24) will contain no more than O(KL) facets. In particular,
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the following gradient-based approximation of three-dimensional p-cones (2.25) in the

positive orthant R3 was suggested in [126]:

UK+k ≥ a
(p)
j U2k−1 + b

(p)
j U2k, j = 0, . . . , L, (2.26a)

where

a
(p)
j = (cosp θj + sinp θj)

1−p
p cosp−1 θj, b

(p)
j = (cosp θj + sinp θj)

1−p
p sinp−1 θj, (2.26b)

and values θj, j = 0, . . . , L, satisfy the condition 0 = θ0 < θ1 < . . . < θL = π
2
.

The constructed in such a way polyhedral approximation of relaxed MIpOCP

problem is solved instead of the exact nonlinear pOCP formulation at every node of

the BnB tree until an integer-valued solution is found. Since the employed polyhedral

approximation is of outer type, its integer solution is not guaranteed to be feasible

to the exact nonlinear pOCP formulation, which needs to be solved in order to verify

feasibility and declare incumbent or branch further (see [124] for details).

The computational advantages of this approach come from the warm-start ca-

pabilities of LP solvers that drastically reduce computational cost of solving a poly-

hedral approximation of relaxed problem during BnB search in comparison to solving

an exact nonlinear relaxation using an interior-point method. The computational

overhead associated with the necessity of invoking an exact nonlinear relaxation for

testing feasibility of the obtained solution is relatively low. It must be emphasized,

however, that the effectiveness of this method is based on the premise that the em-

ployed polyhedral approximation is relatively low-dimensional. For example, Vielma

et al. [124] uses a lifted polyhedral approximation of three-dimensional second-order
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cones due to Ben-Tal and Nemirovski [14], whose accuracy is exponentially small in

the number of facets. The accuracy of gradient approximation (2.26) of p-cones for

p 6= 2 is only polynomially small in the number of facets, and Vinel and Krokhmal

[126] introduced a fast cutting plane algorithm for solving the resulting polyhedral

approximation problems. On the other hand, it has been observed in [124, 126]

that the accuracy of polyhedral approximations used during the BnB process may be

rather “crude” without a significant deterioration of effectiveness of the algorithm.

We use this observation in the present work by employing polyhedral approximation

(2.25)–(2.26) with a small number L of facets.

Finally, to solve an exact nonlinear relaxation of MIpOCP problem during

the BnB algorithm, we use the fact that when p > 1 is a rational number, p =

r/s, a p-order cone in RK+1 can be equivalently represented as a intersection of

O(K log r) three-dimensional second-order cones [86, 13, 85]. Namely, the p-cone

(2.24) is equivalent to

UR
k ≤ uskU

r−s
0 UR−r

k , uk ≥ 0, k = 1, . . . , K, (2.27a)

U0 ≥
K∑
k=1

uk, (2.27b)

where R = 2dlog2 re. Then, each nonlinear inequality (2.27) can be represented by

dlog2 re three-dimensional “rotated” second-order cones, see [85] for details. For ex-

ample, in the case of p = 3, the cone (2.24) in RK+1
+ admits a representation via 2K

quadratic cones:

U0 ≥
K∑
k=1

uk; U2
k ≤ U0vk, v2

k ≤ ukUk, k = 1, . . . , K.
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2.3.3.1 Benders Decomposition Based Branch-and-Bound Algorithm for

HMCRS Model

In this section, we propose an efficient method for solving the HMCRS model

as a MIpOCP problem that incorporates the Benders decomposition mechanism into

the branch-and-bound framework proposed in [124], and as such exploits both the

mixed-integer structure and p-order cone constraints in the problem.

By employing the nomenclature introduced in Section 2.3.1, we represent the

HMCRS model (2.10) in the general form of mixed-integer nonlinear programming

problem (MINLP)

Z = min a′>z + b′>u (MINLP)

s. t. A′z + B′u ≤ c′,

u ∈ Kp,

z ∈ Z ⊂ Zn+, u ≥ 0,

where Kp is a p-order cone in an appropriate high-dimensional space, such that mixed-

integer linear problem MILP is obtained from MINLP by replacing the nonlinear conic

constraint with its polyhedral approximation. The integer relaxation of MINLP, ob-

tained by replacing constraint z ∈ Z ⊂ Zn+ by z ∈ conv (Z) ⊂ Rn
+, is denoted as

NLP. Then, the rest of the definitions stay intact, namely problem RMILP denotes

the equivalent Benders reformulation of problem MILP, and MMILP represents the

corresponding master problem, or relaxation of RMILP, problem SMILP is the corre-

sponding dual subproblem of MILP, and MLP and RLP stand for problems obtained
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by relaxing the integrality constraint in problem MMILP and problem RMILP, respec-

tively. Similarly, zk, z̄k, MLP(zk, z̄k), ZMLP(zk,z̄k), SMILP(ẑk), ZSMILP(ẑk) and N are the

same as described in Section 2.3.2. In addition, we denote the problem obtained by

adding constraints zk ≤ z ≤ z̄k to problem NLP for any (zk, z̄k) ∈ Z2n
+ by NLP(zk, z̄k),

and the corresponding optimal objective value by ZNLP(zk,z̄k). Furthermore, Zk is a

lower bound on ZNLP(zk,z̄k), and Z is the global upper bound on ZMINLP. The algorithm

is described as follows (see Algorithm 2.3 for details).

Step 1-5 The same as described in Section 2.3.2.

Step 6 Solve the problem SMILP(ẑk). If it is unbounded, then add a feasibility cut

to problem MLP(zk, z̄k) and go to Step 3; if its optimal objective value satisfies

ZSMILP(ẑk) > t̂k, then add an optimality cut to problem MLP(zk, z̄k) and go to

Step 3. If its optimal objective value equal to t̂k obtained in Step 5, go to

Step 7.

Step 7 Solve problem NLP(ẑk). If it is feasible and its optimal objective value is less

than the current global upper bound Z, then update the global upper bound Z

and the incumbent solution.

Step 8 If the lower and upper bounds at the current node do not coincide, zk 6= z̄k,

and ZMLP(zk,z̄k) < Z, then solve NLP(zk, z̄k) and go to Step 9; otherwise, fathom

this node and go to Step 2.

Step 9 If the solution of problem NLP(zk, z̄k) is feasible and its objective value is

less than the current global upper bound Z, go to Step 10; otherwise, fathom

this node and go to Step 2.
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Step 10 Denote the optimal solution to problem NLP(zk, z̄k) by (z̃k, ũk). If the values

of z̃k are all integers, then update the global upper bound Z and incumbent

solution, fathom this node and go to Step 2; otherwise, branch on this node

and go to Step 2.



www.manaraa.com

55

Algorithm 2.3 A Benders decomposition based branch-and-bound algorithm for

HMCRS model

1: Set global upper bound Z := +∞; set Z0 := −∞.

2: Set z0
i := −∞, z̄0

i := +∞ for all i ∈ {1, . . . , n}; initialize node list N :={(
z0, z̄0, Z0

)}
.

3: while N 6= ∅ do

4: Select and remove a node
(
zk, z̄k, Zk

)
∈ N .

5: Solve MLP(zk, z̄k).

6: if MLP(zk, z̄k) is feasible and ZMLP(zk,z̄k) < Z then

7: Let (ẑk, t̂k) be an optimal solution to MLP(zk, z̄k).

8: if ẑk ∈ Zn+ then

9: Solve SMILP(ẑk).

10: if ZSMILP(ẑk) = t̂k then

11: Solve NLP(ẑk).

12: if NLP(ẑk) is feasible and ZNLP(ẑk) < Z then

13: Z := ZNLP(ẑk).

14: end if

15: if zk 6= z̄k and ZMLP(zk,z̄k) < Z then

16: Solve NLP(zk, z̄k).

17: if NLP(zk, z̄k) is feasible and ZNLP(zk,z̄k) < Z then

18: Let (z̃k, ũk) be the optimal solution to NLP(zk, z̄k).

19: if z̃k ∈ Zn+ then

20: Z := ZNLP(zk,z̄k).
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Algorithm 2.4 A Benders decomposition based branch-and-bound algorithm for

HMCRS model (continued)

21: else

22: Select i0 in {i ∈ {1, . . . , n} : z̃ki /∈ Z}.

23: Let zi = zki , z̄i = z̄ki for all i ∈ {1, . . . , n}\{i0}.

24: Let z̄i0 = bz̃ki0c, zi0 = bz̃ki0c+ 1.

25: N := N ∪ {(zk, z̄, ZNLP(zk,z̄k)), (z, z̄
k, ZNLP(zk,z̄k))}.

26: end if

27: end if

28: end if

29: else

30: if SMILP(ẑk) is unbounded then

31: Add a feasibility cut

32: end if

33: if ZSMILP(ẑk) > t̂k then

34: Add an optimality cut

35: end if

36: end if

37: else

38: Select i0 in {i ∈ {1, . . . , n} : ẑki /∈ Z}.

39: Let zi = zki , z̄i = z̄ki for all i ∈ {1, . . . , n}\{i0}.

40: Let z̄i0 = bẑki0c, zi0 = bẑki0c+ 1.
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Algorithm 2.5 A Benders decomposition based branch-and-bound algorithm for

HMCRS model (continued)

41: N := N ∪ {(zk, z̄, ZMLP(zk,z̄k)), (z, z̄
k, ZMLP(zk,z̄k))}.

42: end if

43: end if

44: Remove every node (zk, z̄k, Zk) ∈ N such that Zk ≥ Z.

45: end while

Proposition 4. The Benders decomposition based branch-and-bound algorithm for

HMCRS model terminates with the upper bound Z equal to the optimal objective

value of original problem MINLP.

Proof. First, since problem MILP is an outer linear approximation of the nonlinear

problem MINLP, we may regard MILP as a relaxation of MINLP. Besides, problem

MMILP could be deemed as a relaxation of problem MILP because it is a relaxation

of problem RMILP, which is an equivalent reformulation of problem MILP. Thus,

problem MMILP is a relaxation of problem MINLP, and accordingly problem MLP is

a relaxation of problem NLP.

Assuming that the polyhedral relaxation MILP is bounded, this directly implies

the finiteness of this algorithm. We may encounter the issue that solution (ẑk, t̂k) is

generated again in several nodes if we branch as lines 21–26 in Algorithm 2.3,

however, this can only happen a finite number of times according to [124].

In the following, we will show that an integer feasible solution to problem
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MINLP that has an objective value strictly less than the cost of the current incumbent

integer solution cannot exist in the sub-tree rooted at a fathomed node. Note that a

node is only fathomed in lines 6, 15, 17 and 19 in Algorithm 2.3. In line 6, we fathom

the node if MLP(zk, z̄k) is infeasible or if the condition ZMLP(zk,z̄k) ≥ Z is satisfied.

As it was indicated above, MLP(zk, z̄k) is a relaxation of NLP(zk, z̄k), and hence if

MLP(zk, z̄k) is infeasible, NLP(zk, z̄k) will also be infeasible. In addition, one must

have ZNLP(zk,z̄k) ≥ ZMLP(zk,z̄k). Therefore, an integer feasible solution which is strictly

better than the incumbent solution cannot exist in the sub-tree rooted at such a node

(zk, z̄k, Zk). Note that in line 10, if ZSMILP(ẑk) = t̂k, then according to Proposition 2,

ẑ is in fact an integer feasible solution of problem RMILP, and therefore one has to

check problem NLP to make further decision. In line 15, the node is fathomed when

zk = z̄k or ZMLP(zk,z̄k) ≥ Z. If zk = z̄k, then NLP(zk, z̄k) = NLP(ẑk) and hence the

node k has been processed by lines 12–14. If ZMLP(zk,z̄k) ≥ Z, then ZNLP(zk,z̄k) ≥ Z

since MLP(zk, z̄k) is a relaxation of NLP(zk, z̄k). In line 17, the node is fathomed for

the same reasons as described above with respect to line 6. The node is fathomed

in line 19 because the best integer feasible solution has been found at the sub-tree

rooted at the fathomed node.

2.3.3.2 Feasibility and Optimality Cuts for HMCRS Model

The polyhedral approximation of the HMCRS model (2.10) can be written in

the form of a mixed-integer linear problem MILP where, as before, the integer-valued

vector z comprises variables xj, yij, and ζij, so that the corresponding problem (2.11)
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has the form

Z = min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + γt (2.28a)

s. t.
∑
j

xj = h, (2.28b)

yij ≤ xj, ∀i, j, (2.28c)

ζij ≤Myij, ∀i, j, (2.28d)

xj, yij ∈ {0, 1}, ζij ∈ Z+, t ≥ 0, (2.28e)

and the subproblem (2.12), whose optimal objective t(z) defines the value of variable

t above, takes the form

t(z) = min η + (1− α)−1U2K−1 (2.29a)

s. t. pijk ≤ Kjkζij, ∀i, j, k, (2.29b)∑
k

qk
∑
j

pijk ≥ Di, ∀i, (2.29c)

wik ≥ Dik −
∑
j

pijk, ∀i, k, (2.29d)

Uk ≥ q
1/p
k

(∑
i

wik − η
)
, ∀k, (2.29e)

UK+r ≥ a
(p)
l U2r−1 + b

(p)
l U2r, ∀r, l, (2.29f)

wik, pijk, Uk ≥ 0, (2.29g)

where the nonnegative variables pijk, wik, and Uk comprise the vector u, see (2.12).

Let αijk, µi, βik, θk, and νlk be the multipliers associated with constraints

(2.29b), (2.29c), (2.29d), (2.29e), and (2.29f), respectively. Then, the dual of sub-
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problem (2.29) can be written as

t(z) = max
∑
i

∑
j

∑
k

Kjkζijαijk −
∑
i

∑
k

Dikβik −
∑
i

Diµi (2.30a)

s. t. αijk − βik − qkµi ≤ 0, ∀i, j, k, (2.30b)

− βik + θk ≤ 0, ∀i, k, (2.30c)

−
∑
k

θk ≤ 1, (2.30d)

− θk +
∑
l

a
(p)
l νld k

2
e ≤ 0, ∀k = 1, 3, . . . , K − 1, (2.30e)

− θk +
∑
l

b
(p)
l νld k

2
e ≤ 0, ∀k = 2, 4, . . . , K, (2.30f)

∑
l

A
(p)
l νl(K

2
+d k

2
e) −

∑
l

νlk ≤ 0, ∀k = 1, 3, . . . , K − 3, (2.30g)

∑
l

B
(p)
l νl(K

2
+d k

2
e) −

∑
l

νlk ≤ 0, ∀k = 2, 4, . . . , K − 2, (2.30h)

−
∑
l

νl(K−1) ≤
1

1− α
, (2.30i)

αijk, µi, βik, θk, νlk ≤ 0. (2.30j)

For the sake of simplicity, we assume K is an even number. If, for a given optimal

value ẑ obtained from (2.28), problem (2.30) is unbounded, let (α̂, β̂, µ̂) be an extreme

ray of (2.30), such that
∑

i

∑
j

∑
k Kjkα̂ijkζ̂ij −

∑
i

∑
kDikβ̂ik −

∑
iDiµ̂i > 0. Then,

a feasibility cut

∑
i

∑
j

∑
k

Kjkα̂ijkζij −
∑
i

∑
k

Dikβ̂ik −
∑
i

Diµ̂i ≤ 0, (2.31)

is added to (2.28). Conversely, let t̂ and t∗ denote an optimal value of t in the

master problem (2.28), and the optimal objective function value of problem (2.30),
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respectively. If t̂ < t∗, then an optimality cut

∑
i

∑
j

∑
k

Kjkα̂ijkζij −
∑
i

∑
k

Dikβ̂ik −
∑
i

Diµ̂i ≤ t, (2.32)

is added to the master problem (2.28).

2.4 Computational Study

2.4.1 Parameters and Data

This section provides description and justification for the selected data sets and

particular values of parameters in the three stochastic wind farm location models, GS

(2.1), CVaRS (2.8), and HMCRS (2.10) considered in this study.

First, note that the choice of specific values for parameters h (the number of

wind farms to locate), p (the order of tail moment in the HMCR measures of risk), and

α (the parameter controlling the tail cutoff point in both CVaR and HMCR measures

of risk) are at the discretion of the decision maker. It can also be argued that the set

of scenario probabilities qk, k = 1, . . . , K, is in most instances also specified by the

decision maker/analyst (e.g., in the case of historic scenario data, one may choose

whether to adopt the “physical” probabilities or apply a change of probability measure

to work in the domain of “risk-neutral” probabilities, etc).

In the case study reported below, the value of the parameter h is set at h = 3,

implying that three wind farms are to be established on a given set of candidate

locations to serve the demand nodes. The value p in HMCR measure of risk in model

(2.10) is chosen as p = 3, and the values of α are selected at α = 0.95 for the CVaRS

model and α = 0.90 for the HMCRS model.
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The rest of the parameters can be separated into two categories: deterministic

parameters, namely γ, λ, fj, cj and dij, which are assumed to be constant across

scenarios, and stochastic parameters, specifically Kjk and Dik, which represent the

uncertainties in wind speed and consumer demand, respectively. A detailed descrip-

tion and rationale behind assigning specific values to these parameters follow next.

2.4.1.0.1 Deterministic Parameters

The value of the parameter γ represents the cost of power shortages, in millions

of dollars per MW short. In this study, we select values of γ in the range of 0 to 0.95

with a step of 0.05 to conduct sensitivity analysis of obtained solutions with respect

to γ.

We assume that λ, the estimated cost of HVDC line per mile, is 1.5 million

dollars. After amortizing it by 30 years, the cost is equal to 0.05 million dollars per

mile per year. To evaluate the fixed cost of building a wind farm, fj, we refer to

Kuznia et al. [65], who estimated this value at 280 million dollars. To account for

variation of land prices at different locations, we randomly generated the values of

parameter fj from the uniform distribution U(260, 300), and amortized them by 20

years. Next, the cost of purchasing and installing a single wind turbine is reported

to be between 1 and 2 million dollars [32]. Therefore, the corresponding costs cj

have been randomly generated from the uniform U(1, 2) distribution (in millions of

dollars), and amortized over 20 years. The distances dij were randomly generated from

the uniform U(200, 2000) distribution (in miles); in addition, to model the “extreme”
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situations when building a transmission line from site j to demand node i is infeasible

or prohibitively expensive, some of the distances were randomly set equal to 1,000,000

miles.

2.4.1.0.2 Stochastic Parameters

The values of parameters Kjk and Dik are obtained either directly from his-

torical data or from Monte Carlo simulation. The corresponding scenario sets are

constructed in assumption of equiprobable scenarios, i.e., qk = 1/K for all k; below

we discuss the procedures used for scenario generation.

The values of parameter Kjk representing wind turbine power output can be

obtained from wind speed data. In this study, the two methods described below

were used to generate scenario sets for wind speed (and, consequently, wind power

production) distribution. Importantly, we assumed that the wind speed distributions

at different site locations are statistically independent.

Historical records of monthly average wind speed data for different locations

were obtained through the National Climatic Data Center. Typically, the monthly

average wind speed data has a smaller variance and exhibits more symmetry com-

paring to hourly average wind speed. In this study, we assumed that the average

wind speed for each site follows a normal distribution and used maximum likelihood

estimation to calculate its mean and standard deviation based on historical monthly

average wind speed data. Then, scenario sets for wind speed at different sites were

randomly simulated from the estimated normal distributions.
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Another commonly used method for simulation of wind speed data relies on

Weibull distribution ([45, 3]), whose probability density function has the form

f(x) =

{
k
λ

(
x
λ

)k−1
e−( x

λ
)k , x ≥ 0,

0, x < 0,

where k and λ are the shape and scale parameters, respectively. To simulate wind

speed distribution, the shape parameter of Weibull distribution is often chosen as

k = 2, and we randomly set the scale parameter as an integer from the range of

8 ≤ λ ≤ 14.

The wind speed data can then be converted to power output Kjk by use of a

typical power curve equation [24, 101]

P =
1

2
ρAv3Cp,

where Cp is the power coefficient is set equal to 0.45, A = π502 m2 represents the

area swept by the rotor blades of the wind turbine, the density of air ρ is equal to

1.225 kg/m3, v is the wind speed in m/s. Thus, P is the power output in watts

(1 W = 1 kg ·m2/s3). We then scale the results to MW.

The other stochastic parameter that is considered in this case study is the

demand Dik at bus i under scenario k. Similarly to the wind speed data, we also

employ two approaches to generating the scenario set for power demand, but, in

contrast to wind speed data, we assume that demands at different locations may be

correlated.

To construct scenario set for power using historical data, we used the data from

Electric Reliability Council of Texas (ERCOT), which describes eight subsection’s
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electricity consumption in the state of Texas, and scaled it by 0.02 in consideration

of current wind energy penetration level (around 4%) in the United States.

Based on [103, 72, 39, 53], a second simulated scenario set was constructed

in the assumption that the power demand at each node i follows a mixed normal

distribution XY1 +(1−X)Y2, where X is a Bernoulli random variable with parameter

p̃, and Y1 ∼ N1(µ, σ2) and Y2 ∼ N2(µ, 100σ2) represent the “normal” demand and

“extreme/peak” demand, respectively. The value of parameter p̃ of the Bernoulli

distribution was chosen as p̃ = 0.9. To account for the correlation between different

demand nodes, we consider a correlated multivariate distribution by additionally

assuming that distributions N1 of different nodes are correlated with each other, but

N2 are independent (i.e., one may not expect that occurrence of rare events follows

a certain pattern). We use the historical data from Texas to estimate the covariance

matrix of demands. The samples of the “extreme” part N2(µ, 100σ2) of the mixed

normal distribution are independently generated for each node with the σ2 estimated

from the historical data of the state of Texas.

In our numerical experiments, we constructed instances of wind farm location

models of two sizes, one with 7 demand nodes and 6 candidate locations, and another

with 14 demand nodes and 8 candidate locations. The deterministic parameters

for model of each size were generated as described above. For models of each size,

the scenario sets for stochastic parameters (the wind power production and power

demand) were constructed in two ways, using the historical data and simulated data

in accordance to the preceding descriptions.
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2.4.2 Computational Time Comparison

The GS, CVaRS, and HMCRS optimization models, introduced in Section 2.2,

and the corresponding solution algorithms proposed in Section 2.3 have been imple-

mented in C++ using CPLEX 12.5 solver. In particular, the Benders decomposition-

based BnB algorithms described in Sections 2.3.2–2.3.3 were implemented using call-

back functionality of CPLEX, and their computational performance was compared

to CPLEX’s standard MIP and Barrier MIP solvers. Namely, in the following ta-

bles we denote the standard CPLEX MIP solver as “MIP”, and “MIP-B” stands for

the Benders decomposition (Algorithm 2.1) algorithm applied to GS and CVaRS

models. Similarly, “MISOCP” corresponds to solving the HMCRS model using the

default CPLEX MIP Barrier solver as a mixed integer second-order cone program-

ming problem after reformulating the p-order cone constraint via a set of second-order

cones [85]. We also denote the cutting-plane based branch-and-bound algorithm for

mixed integer p-order cone programming problems due to Vinel and Krokhmal [125]

as “BnB”, and the Benders decomposition based branch-and-bound algorithm (Al-

gorithm 2.3) as use “BnB-B”. The computational experiments were conducted on

a 3GHz PC with 4GB RAM running 32-bit Windows 7.

Tables 2.1, 2.2, and 2.3 report the computational performance of the listed

algorithms for the risk-neutral (GS), linear risk-averse (CVaRS), and nonlinear risk-

averse (HMCRS) problems with varying number of scenarios (K = 200, 500, 1000,

and 2000), which were generated using either historical or simulated data, for models

with either 7 demand nodes and 6 candidate locations or 14 demand nodes and 8
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candidate locations.

GS CVaRS HMCRS
K MIP MIP-B MIP MIP-B MISOCP BnB BnB-B

200 1.545 0.344 11.295 1.488 6.879 6.639 2.215
500 6.817 1.295 245.968 4.961 31.154 33.011 5.038
1000 40.185 5.242 730.632 13.026 886.495 809.142 20.467

Table 2.1: Computational time summary (in seconds) for various algorithms applied

to GS, CVaRS, and HMCRS problems with scenario sets of K scenarios based on

historical data, on a model with 7 demand nodes and 6 candidate locations.

The conducted computational study indicates that the proposed Benders de-

composition allows for drastic reductions in running time for both GS model and

CVaRS models as compared to the default CPLEX MIP solver, and the computa-

tional improvements tend to increase with the number of scenarios. With regard

to the nonlinear HMCRS model, we observe that the “BnB” method that only ex-

ploits the structure of p-order cone constraints via polyhedral approximations and

the corresponding cutting-plane algorithm, offers relatively mild improvements over

“MISOCP”, the default CPLEX Barrier MIP solver (which also employs polyhedral

approximations). In contrast, the proposed Benders-based “BnB-B” algorithm signif-

icantly outperforms the other two approaches, especially as the number of scenarios

increases.
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GS CVaRS HMCRS
K MIP MIP-B MIP MIP-B MISOCP BnB BnB-B

500 8.097 1.341 60.238 6.396 371.638 118.956 23.000
1000 60.855 5.413 938.591 13.650 906.556 774.880 69.564
2000 284.840 29.156 4061.700 27.144 10803.40 6501.98 217.885

Table 2.2: Computational time summary (in seconds) for various algorithms applied

to GS, CVaRS, and HMCRS problems with scenario sets of K scenarios based on

simulated data, on a model with 7 demand nodes and 6 candidate locations.

GS CVaRS HMCRS
K MIP MIP-B MIP MIP-B MISOCP BnB BnB-B

100 5.039 3.495 32.749 25.147 55.413 39.564 42.960
200 17.277 2.356 111.346 59.576 409.750 182.297 19.641
500 88.779 7.784 1067.050 113.749 1216.690 922.894 289.238

Table 2.3: Computational time summary (in seconds) for various algorithms applied

to GS, CVaRS, and HMCRS problems with scenario sets of K scenarios based on

historical data, on a model with 14 demand nodes and 8 candidate locations.
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2.4.3 Out-of-sample Solution Analysis

In this section, we conduct an out-of-sample analysis of the constructed wind

farm location models. To this end, we consider optimal solutions of the risk-neutral

and risk-averse problems (GS, CVaRS, and HMCRS, respectively) for given fixed sets

of parameters and scenarios, and then compute appropriate quantities of interest (for

example, power shortages) under the assumption that one of the relevant parameters

of the model assumes values that are different from those used in the corresponding

optimization problem (i.e., we “test” the obtained solutions on data samples that

were not used during optimization). Importantly, our out-of-sample analysis focuses

on the “extreme”, or “worst-case” scenarios, in order to emphasize the effects of

risk-aversion in the solutions of the proposed models.

2.4.3.1 Shortage Analysis

Specifically, we assume that the out-of-sample data is represented by power

demands Dik (obviously, all parameters in the respective mathematical programming

problems can be replaced with out-of-sample values; but for simplicity and clarity of

interpretation of the results, in this study the out-of-sample data includes only the

power demands).

We analyzed out-of-sample shortages across the grid,
∑

i(Dik −
∑

j ζijKjk)+,

induced by the optimal solutions of GS, CVaRS, and HMCRS problems in the case of

a model with demand 7 nodes and 6 candidate locations and 2000 scenarios based on

simulated data, as well as in the case of 14 demand nodes and 8 candidate locations,
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both with value of parameter γ = 0.24. We randomly generated a dataset consisting

of 2000 scenarios of consumer demand Dik from the same mixed normal distribution,

and selected the scenarios with shortages beyond 0.95 sample quantile in our out-

of-sample scenario set as the “extreme”, or “worst-case” scenarios (in other words,

the out-of-sample scenario set contained a total of 100 scenarios that represent 5% of

highest power shortage levels).

The results are presented in the shortage histograms and boxplots in Fig-

ures 2.1 and 2.2. In the case of the smaller model with 7 demand nodes and 6

candidate locations, the boxplots of shortages indicate that both risk-averse mod-

els, HMCRS and CVaRS, significantly outperform the risk-neutral GS model. The

CVaRS model has smaller 0.75 quantile value of shortages than HMCRS model, but

it has larger extreme points. This observation is in accord with γ sensitivity analysis

presented in the next section. Analysis of shortage histograms shows that all short-

ages for HMCRS model are within 500 MW, and most of its shortages fall in the

range of [0, 50) MW, while the fraction of zero shortages exceeds 30%. As regards

the CVaRS model, shortage has exceeded 500 MW in one scenario, but most of its

shortages do not exceed 250 MW, also with a high fraction of zero shortages. In

contrast, “extreme” out-of-sample power shortages in GS model are always non-zero

and fall mainly between 500 MW and 1000 MW, and can be as high as 1500 MW.

Similarly, in the case of models with 14 demand nodes and 8 candidate lo-

cations, boxplots in Figure 2.2 indicate that the HMCRS model has the lowest 0.25

quantile, median, 0.75 quantile, etc., and CVaRS model performs much better than
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the GS model. The histograms of power shortages indicate that over 20% of out-of-

sample shortages are within [0, 250) MW for HMCRS model. However, no shortages

fall into this range in the case of CVaRS and GS models. Also, 98% of “extreme”

out-of-sample shortages are below 1000 MW for HMCRS model. Although over 70%

of “extreme” out-of-sample shortages are under 1000 MW for CVaRS model, there

is a substantial number of out-of-sample shortages within [1000,1500) MW, and even

reaching 2000 MW in one scenario. As regards the GS model, most of its shortages are

between 1000 MW and 2000 MW, and it has nearly 5% of “extreme” out-of-sample

shortages beyond 2000 MW. The largest shortage that was observed in the GS model

is close to 2500 MW.

2.4.3.2 Sensitivity with Respect to Shortage Penalty Parameter γ

Recall that the sensitivity to power shortages of the risk-averse CVaRS and

HMCRS models is determined by the parameter γ, which represents the dollar cost of

1 MW of power short. The risk-neutral GS model is insensitive to (does not contain)

the parameter γ, and, moreover, for the value of γ = 0, all three models yield the

same solutions. In this section, we evaluate several aspects of the performance of

the GS, CVaRS, and HMCRS models with respect to different levels of sensitivity

to power shortages, corresponding to varying the value of the parameter γ from 0 to

0.95. Obviously, the solution of the GS model would not change with γ, and can be

considered as the “reference” point in this comparison.

To evaluate the performance of three models, we consider four criteria: (1)
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Figure 2.1: Shortages in out-of-sample extreme scenarios for model with 7 nodes and

6 locations



www.manaraa.com

73

Histogram of GS

Shortage, MW

F
re

qu
en

cy

0 500 1500 2500

0
5

10
15

20
25

30

Histogram of CVaRS

Shortage, MW

F
re

qu
en

cy

0 500 1500 2500

0
5

10
15

20
25

30

Histogram of HMCRS

Shortage, MW

F
re

qu
en

cy

0 500 1500 2500

0
5

10
15

20
25

30

●

0
50

0
10

00
15

00
20

00
25

00

Boxplot of GS

S
ho

rt
ag

e,
 M

W

●

0
50

0
10

00
15

00
20

00
25

00

Boxplot of CVaRS

S
ho

rt
ag

e,
 M

W

●

●

0
50

0
10

00
15

00
20

00
25

00

Boxplot of HMCRS

S
ho

rt
ag

e,
 M

W

Figure 2.2: Shortages in out-of-sample extreme scenarios for model with 14 nodes

and 8 locations
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the amortized annual cost, (2) the mean cumulative shortage across the grid, (3) the

number of shortage scenarios, i.e., the scenarios under which shortages occur, and

(4) the mean number of demand nodes that experience shortages. The annual cost is

computed as
∑

j fjxj +
∑

i

∑
j cjζij +

∑
i

∑
j λdijyij; according to Section 2.4.3, the

cumulative shortage at scenario k is defined as
∑

i(Dik−
∑

j ζijKjk)+, and thus mean

shortage is E[
∑

i(Dik −
∑

j ζijKjk)+]. As in the previous section, the out-of-sample

analysis is conducted, in the sense that all the four criteria are evaluated on the set of

100 “extreme” out-of-sample scenarios determined as described above, e.g., the mean

shortage and the mean number of demand nodes with shortages should be interpreted

as a conditional expectations. The four criteria are thus computed for the case of 7

demand nodes and 6 candidate locations and 2000 scenarios, and values of γ varying

from 0 to 0.95 with a step of 0.05. The results are presented in Figure 2.3, where the

horizontal (constant) lines correspond to the GS model.

As expected, the annual costs of CVaRS and HMCRS models increase with

γ. In contrast, mean shortage and mean number of shortage nodes in the CVaRS

and HMCRS models decrease sharply with γ. Compared with the CVaRS model, the

HMCRS model always performs better in terms of criteria (2)–(4), except for values

γ around 0.5, but incurs higher annual costs. In conclusion, CVaRS and HMCRS

models could be tuned to fit user’s risk-averse preference so as to achieve better risk

control of power shortages.
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Figure 2.3: Out-of-sample performance of GS, CVaRS and HMCRS with regard to γ
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2.5 Conclusions

In this chapter, we have considered three different stochastic optimization

models for strategic wind farm location and operation: a risk-neutral model, a two

models where risk preferences are represented by a linear risk measure (Conditional

Value-at-Risk), and a nonlinear risk measure (Higher-Moment Coherent Risk mea-

sure). We proposed a branch-and-bound algorithm based on Benders decomposition

technique to solve the resulting linear and p-order cone mixed-integer programming

problems. The conducted numerical study demonstrates the efficiency of developed

algorithms, and also indicates the risk-averse models allow for drastic reduction of

wind power shortages, and can effectively be used in strategic location and planning

problems.
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CHAPTER 3
EFFECTS OF ENERGY STORAGE ON RISK-AVERSE STRATEGIC

PLANNING OF RENEWABLE POWER GRIDS

3.1 Introduction

In this chapter, we also investigate how risk-averse planning of renewable en-

ergy grids can be effective in hedging of risks of power shortages due to stochastic

variations in power generation and demand. We further develop the models of (2.4.1)

by introducing two risk-averse stochastic models that take into consideration energy

storage devices, which are supposed to compensate the possible future shortages to

certain extent. The benefits of combining renewable sources with energy storage de-

vices have been extensively studied. Paper [117] discusses the effects of wind power

generation with compressed air energy storage on system operation, and [33] presents

a dynamic programming algorithm to solve the problem of operating and scheduling a

virtual power plant by coupling a wind farm and an energy storage facility. A stochas-

tic dynamic programming model has been developed in [133], so as to co-optimize the

energy storage which can be used for multiple applications. Similarly, a multi-stage

stochastic program and a dynamic program are proposed in [79] to analyze different

storage technologies and discuss their applications in power markets. An approxi-

mate dynamic programming method for energy storage problem with the supply of

wind energy is presented in [55]. Approximate dynamic programming method has

also been used in [100] to address the problem of optimizing an energy system with

storage devices where the wind power supply, market electricity price, and electricity
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demand are all stochastic.

Although time is an important factor in the formulation when taking energy

storage capabilities into account, however, we here seek to mimic the storage and

dispatch process by accumulating extra energy from “some” scenarios and consuming

stored energy in “other” scenarios. In other words, we assume that the superfluous

energy from some scenarios can be kept in storage devices (such as pumped hydro-

electric storage and compressed air energy storage system), which would be utilized

to supply certain amount of power demand in other scenarios to mitigate the shortage

risk, under the condition that scenarios might represent a sequence of events.

The main aim of these extended models (models with energy storage) is to

illustrate the impact of storage devices on operation of power grids and future power

shortage possibility. Obviously, it is more reasonable to formulate the extended prob-

lems as stochastic dynamic programming problems to consider the storage and com-

pensation in all time periods as a whole. The way we present the models here can be

considered as one-period planning, which can be thought of as statically approximat-

ing the stochastic dynamic problem, and which serves our purpose to demonstrate

the energy storage benefits.

The remainder of this chapter is organized as follows. In Section 3.2 we for-

mulate two stochastic wind farm location models in presence of energy storage,

with different degrees of risk aversion. Dataset generation, computational results,

and corresponding solution analysis are presented in Section 3.3, while Section 3.4

summarizes and concludes this study.
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3.2 Stochastic Wind Farm Location Models with Energy Storage

In this section, we introduce two stochastic models that integrate energy stor-

age devices into renewable power grids and employ the Conditional Value-at-Risk

(CVaR) measure and its nonlinear generalization Higher Moment Coherent Risk

(HMCR), and therefore represent extensions of the risk-averse stochastic models de-

scribed in Section 2.2.

First, it is worthwhile to comment on the difference between power and energy,

which has an important influence on how we formulate the following models. Basically

speaking, energy measures the ability to perform work, which can be stored and can

also flow. The speed of energy flowing is defined as power, which is equivalent to the

amount of energy consumed per unit of time, but cannot be conserved. In reality,

we are concerned about the power shortage that would occur under the condition

that the power supply is insufficient to meet the required power demand. In order

to introduce power shortage risk measures and energy storage through constraints

simultaneously, we suggest considering the power as the “instant” energy (an amount

of energy consumed per unit of time) in the following models. As a result, extra

“power” can be stored and re-delivered. From another perspective, even if the time

multipliers are placed on both sides of energy storage constraints, they can always be

simply cancelled out which would leave the constraints only in presence of power.

It is also assumed that the energy storage device is common to all wind farms,

and is connected to these sites via HVDC lines. Using the property that HVDC

transmission line allows for switching flow direction, the device can absorb surplus
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energy from a given set of wind farms and dispatch the stored energy to final customers

to compensate for power shortages, rerouting it via the transmission lines of the

corresponding wind farms.

The notations of variables and parameters follow the definitions of Section 2.2,

with additional variables and parameters defined as follows. Let κ1 be the annualized

cost (per MW) of installing energy storage device, and κ2 be the storage efficiency

of the device (i.e., if S MWh of the surplus energy are stored, then only κ2S MWh

would be recovered for energy supply). For instance, the energy efficiency of pumped

hydroelectric storage system varies between 70% and 80% in practice, and compressed

air energy storage system could achieve an energy efficiency between 60% and 90%.

Introducing additional variables sijk as the surplus power at candidate wind

farm location j that generates power for demand node i under scenario k, ξik as the

amount of “stored” power used by demand node i under scenario k and S as the

capacity of storage device, we can formulate the CVaR-based stochastic model with

storage (CVaRSS) as:



www.manaraa.com

81

min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + κ1S + γ

(
η +

1

1− α
∑
k

qkUk

)

(3.1a)

s. t.
∑
j

xj = h, (3.1b)

yij ≤ xj, ∀i, j, (3.1c)

ζij ≤Myij, ∀i, j, (3.1d)

pijk + sijk ≤ Kjkζij, ∀i, j, k, (3.1e)∑
k

qk

(∑
j

pijk + ξik

)
≥ Di, ∀i, (3.1f)

∑
i

ξik ≤ κ2

∑
k

qk
∑
i

∑
j

sijk, ∀k, (3.1g)

ξik ≤M
∑
j

yij, ∀i, k, (3.1h)

∑
i

∑
j

sijk ≤ S, ∀k, (3.1i)

Uk ≥
∑
i

(
Dik −

∑
j

pijk − ξik

)
+

− η, ∀k, (3.1j)

Uk ∈ R+, (3.1k)

xj, yij ∈ {0, 1}, ζij ∈ Z+, pijk, sijk, ξik, S ∈ R+. (3.1l)

The objective function (3.1a) represents an utility function which consists of the

cumulative annual cost and penalty for power shortage risk, to be minimized. Con-

straint (3.1b) stipulates that exactly h wind farms are to be located. Constraint (3.1c)

states that a demand node i cannot be assigned to a wind farm j unless a wind farm
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is located at site j. Constraint (3.1d) limits the number of wind turbines at site j

that can be assigned for serving bus i. Constraint (3.1e) ensures that power sup-

plied by candidate site j to demand node i under scenario k plus the corresponding

possible extra power for “storage” is less than or equal to the total capacity of all

wind turbines assigned at candidate site j to demand node i. Constraint (3.1f) en-

sures that the expected power supplied (direct supply from wind farms and indirect

supply from storage devices) to demand node i from all sites does at least meet the

expected demand at demand node i. Constraint (3.1g) requires that the total amount

of “stored” power that is available under each scenario k should be less than or equal

to the average amount of “stored” power over all the scenarios. This constraint also

ensures that the total “consumed” power from storage device across all scenarios does

not exceed the total “stored” power. Constraint (3.1h) states that if there were no

connections between demand node i and any candidate wind farm site j, the “stored”

power could not be be delivered to that demand node since we have assumed that

the storage device can only “dispatch” power via the HVDC transmission lines be-

tween the wind farms and their respective customers. Constraint (3.1i) maintains

that at any given scenario k, the total amount of stored power, as generated by all

windfarms, cannot exceed the capacity of the storage device S. Constraints (3.1j)

relates to implementation of the Conditional Value at Risk measure. Lastly, con-

straints (3.1k)–(3.1l) prescribe the values that decision variables can take, where Z+

and R+ denote the sets of non-negative integer and real numbers, respectively. In

what follows, the feasible set defined by constraints (3.1b)–(3.1i) and (3.1l) is denoted



www.manaraa.com

83

by P ′.

Similarly, the HMCR-based stochastic model with storage (HMCRSS) is for-

mulated as:

min
∑
j

fjxj +
∑
i

∑
j

cjζij +
∑
i

∑
j

λdijyij + κ1S + γ
(
η + (1− α)−1U0

)
(3.2a)

s. t. q
−1/p
k Uk ≥

∑
i

(
Dik −

∑
j

pijk − ξik
)

+

− η, ∀k, (3.2b)

U0 ≥
(
Up

1 + . . .+ Up
K

)1/p
, (3.2c)

U0, Uk ∈ R+, (3.2d)

xj, yij, ζij, pijk, sijk, ξik, S ∈ P ′. (3.2e)

The difference here is that we apply a higher moment risk measure to quantify the

shortage risk in the formulation.

To reiterate, the proposed stochastic models CVaRSS and HMCRSS are “stat-

ically” approximating the dynamic storage and dispatch process, by ignoring time

factor, i.e., the sequential nature of the “store-dispatch” operation. In a sense, such

an approach to modeling the storage devices regards the operation of the grid in a

“steady state”, where scenarios may repeat over and over, with the prescribed prob-

abilities. Constraints (3.1e)–(3.1g) determine how much energy can be stored in one

scenario, the amount of energy can be extracted from storage device and how much

energy can be used to supply in another scenario. From this point of view, if we

consider different scenarios as a sequence of events, storing energy in one scenario

and using it in another scenario amounts to conserving energy at some time point t

and consuming it at another time point t′.
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3.3 Computational Study

In this section, we analyze the out-of-sample performance of the proposed wind

farm location models with storage (CVaRSS and HMCRSS), and draw a comparison

with the models without storage (CVaRS and HMCRS) described in Section 2.2.

The “storage-based” and “storage-less” models are compared using out-of-

sample data using the following procedure. First, optimal solutions for both “storage-

based” and “storage-less” models are obtained for a given set of (in-sample) scenarios.

The integer variables of these models represent long-term, or strategic planning de-

cisions, which pertain to the locations of wind farms, number of wind turbines at

each wind farm site, set of customers served by each wind farm. The continuous

variables, such as power production, power dispatched to a given customer, power

stored, etc., are scenario-dependent and represent “short-term” decisions that are

made in response to or in anticipation of wind speed levels and power demands.

Since the integer variables are scenario-independent, and continuous variables are

scenario-dependent, they can also be regarded as first- and second-stage variables in

the two-stage stochastic programming setting [17].

In view of this, we generate an out-of-sample scenario data for wind speed

and power demand, and resolve the “storage-less” and “storage-based” models with

the values of integer (first-stage) variables fixed to their optimal values obtained

using the in-sample data, while the continuous (second-stage) variables are “opti-

mized” in response to out-of-sample data. To formalize the outlined procedure, let

P (x1,x2, Ddet, Dstoch) denote a wind-farm location model, where x1, x2, Ddet, and
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Dstoch denote, respectively, the integer (first-stage) variables, continuous (second-

stage) variables, deterministic data, and stochastic (wind speed, power demand) data.

Then, the described procedure is implemented as follows.

1. Generate the in-sample data D
(in)
det , D

(in)
stoch.

2. Obtain an optimal solution (x∗1,x
∗
2) of problem P with the in-sample data:

(x∗1,x
∗
2) ∈ arg min

x1,x2

P
(
x1,x2, D

(in)
det , D

(in)
stoch

)
.

3. Generate out-of-sample stochastic data D
(out)
stoch.

4. Solve problem P with out-of-sample stochastic data and values of first-stage

variables fixed to their optimal values x∗1 obtained in Step 1:

x∗∗2 ∈ arg min
x1=x∗

1, x2

P
(
x1,x2, D

(in)
det , D

(out)
stoch

)
.

5. Evaluate the out-of-sample performance of the model P based on the solution

obtained in Step 4.

Above, the “storage-less” models CVaRS and HMCRS and “storage-based” models

CVaRSS and HMCRSS are used as model P .

We follow the data generation methods described in Section 2.4.1. In our

numerical experiments, we use instances of wind farm location models with 7 demand

nodes and 6 candidate locations.

3.3.1 Criteria for Out-of-sample Analysis

For models without storage (CVaRS and HMCRS), we adopt the same method

to conduct the out-of-sample analysis which is elaborated in 2.4.3. In contrast, we
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would have a set of possible shortage profiles due to the existence of storage de-

vice for models with storage (CVaRSS and HMCRSS). That means storage device

could provide the option to reallocate “stored” power to compensate certain power

shortage at some demand nodes under certain scenarios. In order to make their

performance comparable to that of models without storage, we choose the expected

shortage
∑

k qk
∑

i(Dik −
∑

j pijk − ξik)+ as the objective function to be minimized

over the feasible set.

The optimization model is defined as:

min
∑
k

qkUk (3.3a)

s. t. pijk + sijk ≤ Kjk · ζ̂ij, ∀i, j, k, (3.3b)∑
i

ξik ≤ κ2

∑
k

qk
∑
i

∑
j

sijk, ∀k, (3.3c)

∑
i

∑
j

sijk ≤ Ŝ, ∀k, (3.3d)

Uk ≥
∑
i

(
Dik −

∑
j

pijk − ξik

)
+

, ∀k, (3.3e)

pijk, sijk, ξik, Uk ∈ R+. (3.3f)

where ζ̂ij and Ŝ are the values of variables ζij and S obtained from optimal solutions of

problems CVaRSS or HMCRSS, respectively. Constraint (3.3b) limits the magnitude

of the “immediate” power supply pijk to customers and power “to be stored” sijk

by optimal values of integer variable ζij from the first stage solution. Constraint

(3.3c) takes into account storage efficiency. Constraint (3.3d) ensures that the overall

storage capacity is predetermined in the first stage.
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The reason that model (3.3) omits constraints (3.1b)-(3.1d) is straightforward

since these constraints only involve binary and integer variables and thus these con-

straints would definitely be satisfied with the corresponding values of discrete vari-

ables from the first stage. For the out-of-sample data, we cannot guarantee that the

expected power supplied (partially determined by the values of binary and integer

variables from the first stage) to each demand node i does at least meet the expected

demand at the corresponding location, and consequently we leave out constraints

(3.1f). Since we have constraints (3.1h) in models (3.1) and (3.2), which are neces-

sary for the models to make sure that there is at least one connection between wind

farm and demand node, we can deliver any available amount of “stored” power to

any final customer via connection between wind farms and demand nodes. Therefore,

we decide not to include (3.1h) in the optimization model (3.3).

3.3.2 Out-of-sample Solution Analysis

The out-of-sample data consists of one thousand randomly generated samples

for parameters Dik and Kjk, respectively, according to the methods described in

Section 2.4.1.0.2. Accounting for different storage efficiency in practice, we set κ2 =

0.5 and 0.75 for testing. In another respect, we also seek to investigate the influence

of storage efficiency on renewable power grid planning. For the other parameter κ1,

we select it to assume values 0.04, 0.08, 0.12, 0.16, and 0.24, respectively, in order to

investigate its impact on optimal solutions of CVaRRS and HMCRSS models.

We present the out-of-sample analysis results of stochastic wind farm location
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models with storage (CVaRSS and HMCRSS) and without storage (CVaRS and HM-

CRS), in the following figures. Note that there are certain points with their X-axis

values equal to Inf in the figures, which in fact represent the analysis results from

models without storage (CVaRS and HMCRS). The reason for such an interpretation

is that the value of κ1 = +∞ in models CVaRSS and HMCRSS corresponds to energy

storage being extremely expensive for any practical use, so that the corresponding

formulation is equivalent to the one without storage.

Figure 3.1 shows the out-of-sample test results of the CVaRS model (κ1 = +∞)

and the CVaRSS model by setting κ1 = 0.04, 0.08, 0.12, 0.16, and 0.24, and κ2 = 0.5

and 0.75, respectively. Two series of data points representing results from setting κ2

= 0.5 and 0.75 in fact demonstrate similar pattern, into which we would give certain

insights first. From the top-left graph in Figure 3.1, we can observe that the fixed

cost for configuring a power grid system increases with an increase in the annualized

cost of installing storage device κ1. The primary reason for this is that the required

number of wind turbines would decrease if κ1 goes down, which results from the fact

that a smaller κ1 always encourages a larger storage capacity (larger value of variable

S as shown in middle-left picture of Figure 3.1), which in turn is able to provide more

“capability” to compensate possible power shortage. These results indicate that one

should take advantage of energy storage device when its annualized installation cost is

low. The remaining three graphs demonstrate the performance of the CVaRSS model

and CVaRS model on the out-of-sample dataset. The performance metrics include

the mean power shortage, the number of shortage scenarios, and the mean number of
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shortage nodes, which have been described at the beginning of this section. We can

observe another trend: as the annualized installation cost κ1 decreases, the obtained

optimal configuration of renewable power grid performs better. That means if the

annualized cost of installing storage device reduces, not only can one benefit from a

lower fixed cost of configuring a renewable power grid, but also from bearing less risk

exposure to power shortages.

Comparison between two series of data points reveals the influence of storage

efficiency parameter κ2 on the configuration of renewable power grid. In particular,

when the storage efficiency is higher (κ2 = 0.75), the optimal storage capacity offered

by the CVaRSS model is higher, accompanied by a lower fixed cost and a smaller num-

ber of installed wind turbines. Additionally, higher storage efficiency would make the

model less vulnerable to power shortage risk, according to the adopted performance

metrics of mean power shortage, number of shortage scenarios, and mean number of

shortage nodes. Another interesting point is that as κ1 increases, the performance of

CVaRSS solution approaches that of CVaRS solution. More specifically, when κ1 is

equal to 0.24, the CVaRSS model with κ2 = 0.75 would have the same solution as

the CVaRS model. Similarly, when κ1 is greater than 0.16 and κ2 = 0.5, the CVaRSS

solution always suggests against incorporating storage devices into power grid.

Next, we present a comparison of the out-of-sample performance of the HM-

CRS model and the HMCRSS model by setting κ1 = 0.04, 0.08, 0.12, 0.16, and 0.24

and κ2 = 0.5 and 0.75 in Figure 3.2. Generally, the main tendencies are analogous

to those in Figure 3.1, although the values of mean shortage oscillate as κ1 increases.
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Figure 3.1: Comparison of models CVaRSS (κ1 = 0.04, 0.08, 0.12, 0.16 and 0.24)

and CVaRS (κ1 = Inf), where black dots represent storage efficiency κ2 = 0.5 and

diamonds represent storage efficiency κ2 = 0.75.



www.manaraa.com

91

27
5

28
0

28
5

29
0

Kappa1

F
ix

ed
 c

os
t

0.04 0.08 0.12 0.16 0.24 Inf

●

●

● ● ● ●

60
0

70
0

80
0

90
0

Kappa1

N
o.

 o
f w

in
d 

tu
rb

in
es

0.04 0.08 0.12 0.16 0.24 Inf

●

●

● ● ● ●

0
50

10
0

15
0

20
0

25
0

Kappa1

S
to

ra
ge

 c
ap

ac
ity

0.04 0.08 0.12 0.16 0.24 Inf

●

●

● ● ● ● 21
.2

21
.6

22
.0

22
.4

Kappa1

M
ea

n 
sh

or
ta

ge

0.04 0.08 0.12 0.16 0.24 Inf

●

●

● ● ● ●

22
0

26
0

30
0

34
0

Kappa1

N
o.

 o
f s

ho
rt

ag
e 

sc
en

ar
io

s

0.04 0.08 0.12 0.16 0.24 Inf

●

●

● ● ● ●

0.
55

0.
65

0.
75

Kappa1

M
ea

n 
no

. o
f s

ho
rt

ag
e 

no
de

s

0.04 0.08 0.12 0.16 0.24 Inf

●

●

● ● ● ●

Figure 3.2: Comparison of models HMCRSS (κ1 = 0.04, 0.08, 0.12, 0.16 and 0.24)

and HMCRS (κ1 = Inf), where black dots represent storage efficiency κ2 = 0.5 and

diamonds represent storage efficiency κ2 = 0.75.
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The fixed cost rises but the corresponding robustness of power grid decreases as the

value of κ1 goes up. With a lower storage efficiency (κ2 = 0.5), the HMCRSS model

suggests a larger number of wind turbines should be installed and a smaller storage

capacity, when compared to the model with a higher storage efficiency (κ2 = 0.75).

In addition, higher storage efficiency can reduce the HMCRSS model’s exposure to

power shortage risk. If κ1 = 0.24 and κ2 = 0.75, the optimal solution from HMCRSS

indicates that no storage devices should be installed. In contrast, the HMCRSS so-

lution always suggests not incorporating any storage devices into power grid if κ2 =

0.5 and κ1 is greater than 0.12.

When we compare the results of HMCRSS model to that of CVaRSS model

with the same κ1 and κ2 settings, we may observe that the HMCRSS model recom-

mends a larger storage capacity and a higher number of installed wind turbines. As

a result, the HMCRSS model provides less exposure to the risk of power shortage

as compared with the CVaRSS model in terms of the employed performance metrics

(mean power shortage, number of shortage scenarios, and mean number of shortage

nodes).

In conclusion, we observe that the stochastic wind farm location models with

storage (CVaRSS and HMCRSS) outperform the models without storage (CVaRS

and HMCRS) in the out-of-sample test when the annualized cost of installing storage

device (κ1) is relatively low. Additionally, the CVaRSS and HMCRSS models tend to

perform better as annualized cost of installing storage device κ1 decreases and storage

efficiency κ2 increases. Lastly, the HMCRSS model generally suggests larger storage
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capacity and larger number of installed wind turbines compared with the CVaRSS

model, in exchange for less exposure to power shortage risk.

3.4 Conclusions

In this chapter, we have considered two different stochastic optimization mod-

els with energy storage for strategic wind farm location and operation: a model where

risk preference is represented by a linear risk measure (Conditional Value-at-Risk),

and the other adopts a nonlinear risk measure (Higher-Moment Coherent Risk mea-

sure). The storage and dispatch is mimicked by conserving extra energy from “some”

scenarios and consuming stored energy in “other” scenarios. Compared with risk-

averse stochastic models (CVaRS and HMCRS), the proposed models (CVaRSS and

HMCRSS) demonstrate that employing energy storing devices in a renewable energy

power grids could lead to significant benefits in reduction of power shortage risk,

provided that the annualized installation cost energy storage devices is relatively low.
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CHAPTER 4
CONVEX RELAXATIONS OF OPTIMAL POWER FLOW PROBLEM

OVER RADIAL NETWORKS

In this chapter, we consider the optimal power flow (OPF) problem over net-

works with a tree topology, or radial networks. The reason that we are interested in

radial networks is two-fold. In practice, it becomes increasingly crucial to solve OPF

problem for distribution network because of the penetration of distributed generation

and controllable demand. From the computational perspective, distribution networks

generally have a tree topology, and as a result it would simplify the OPF problem as

compared with general non-tree, or meshed networks.

The challenges associated with OPF models are due to the non-convexity of the

corresponding optimization formulations, which introduce significant computational

difficulties in determining an optimal solution of OPF problems even in small-scale

instances. Thus, considerable attention has been given in literature to development

of convex relaxations of the non-convex nonlinear OPF models. The most common

methods of constructing such convex relaxations rely on reformulating the OPF model

as a (non-convex) semidefinite programming (SDP) problem, and then relaxing some

of the non-convex constraints in the resulting SDP formulations in order to obtain a

convex SDP problem.

The remainder of this chapter is organized as follows. In Section 4.1, we

first review the recent advances in the convex relaxation of the OPF problem mainly

based on the work [74, 75, 40, 19, 136, 106, 106, 71, 44, 43, 136, 69], and then
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show the exactness of convex relaxation on OPF problem over radial networks under

certain assumptions. Proofs of exactness of a specific conic relaxation of OPF problem

([58, 59]) under over-satisfaction condition and that of its “extended” formulation are

presented in Section 4.2.

4.1 Convex Relaxation of OPF Problem over Radial Networks

We can model a power network with an undirected graph G(N , E) consisting

of a set of nodes (buses) and a set of edges (lines), where N := {1, 2, . . . , N}, and

E ⊆ N × N . Since graph G(N , E) is undirected, then (j, k) ∈ E if and only if

(k, j) ∈ E . In what follows, we denote an undirected edge (j, k) by “j ∼ k” and a

cycle c := {n1, . . . , nK} is an ordered set of nodes such that nk ∈ N , (nK , n1) ∈ E

and (nk, nk+1) ∈ E for k = 1, . . . , K − 1.

4.1.1 Optimal Power Flow Problem

The power flow equations for each node j can be described as (see Section

1.3.1.1 for details):

Sj = Vj
∑
k:j∼k

Y H
jk V

H
k , ∀j ∈ N , (4.1)

where Vj and Sj are the complex voltage and the complex power respectively, and

Yjk represents elements in admittance matrix Y , which is defined by

Yjk =


∑

i:i∼j yji, if j = k,

−yjk, if j 6= k and j ∼ k,
0, otherwise.

In addition to constraints (4.1), the basic optimal power flow problem also



www.manaraa.com

96

requires all voltage magnitudes to be box-constrained as:

V j ≤ |Vj| ≤ V j, ∀j ∈ N , (4.2)

where V j and V j represent bounds on voltage magnitudes at each bus j. Further,

the power injections at each node j must satisfy:

Sj ≤ Sj ≤ Sj, ∀j ∈ N , (4.3)

where Sj and Sj are given lower and upper bounds.

If we substitute expressions (4.1) for variables Sj in constraints (4.3), we can

formulate the OPF problem only in terms of the complex voltage variables, which

can be presented as

min f(V ) (4.4a)

s. t. V j ≤ |Vj| ≤ V j, ∀j ∈ N , (4.4b)

Sj ≤ Vj
∑
k:j∼k

Y H
jk V

H
k ≤ Sj, ∀j ∈ N , (4.4c)

where V is the complex voltage vector and f(V ) is the cost function, which is most

commonly specified as function (1.9) representing real power generating cost at all

generator buses.

4.1.2 Convex Relaxations of the OPF problem

In the what follows, we will first present three different relaxations of the OPF

problem based on semidefinite programming (SDP), chordal and second-order cone

programming (SOCP) due to [74, 75], and then discuss their properties and exactness.
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Before introducing the convex relaxations mentioned above, the definitions of

partial matrix and its completion are given as follows. Suppose we have an undirected

graph U with N vertices and M edges, then a partial matrix WU is defined as:

WU :=
{

[WU ]jj, [WU ]jk, [WU ]kj
∣∣ nodes j and edges (j, k), (k, j) of U

}
.

with cardinality equal to 2M +N . It is a matrix with corresponding elements equal

to these complex numbers. Any fully specified n× n matrix W such that

[W ]jj = [WU ]jj, [W ]jk = [WU ]jk ∀j, (j, k) ∈ U,

is a completion of partial matrix WU . For partial matrices, the Hermitian is defined as

[WU ]jk = [WU ]Hkj, for all (j, k) ∈ U . The positive semidefiniteness (PSD) property of

WU , denoted as WU � 0, is given that WU is Hermitian and for any clique q of graph

U the corresponding principal submatrix WU(q) is PSD. If the principal submatrices

WU(q) all have rank-1 for any clique q on graph U , the rank of matrix WU is equal

to one.

A chordal graph is a simple graph in which all cycles of length four and greater

have a chord, which is an edge connecting two vertices of the cycle but not belonging

to the cycle. Thus, the chordal extension c(U) of graph U can be interpreted as a

chordal graph containing U , with the same vertices but having a superset of graph

U ’s edge set. Correspondingly, we denote Wc(U) as a chordal extension of the partial

matrix WU .

If we specify the undirected graph U as the power network G = (N , E), a
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partial matrix WG is then defined as

[WG]jj := |Vj|2, ∀j ∈ N , (4.5a)

[WG]jk := VjV
H
k =: [WG]Hkj, ∀(j, k) ∈ E . (4.5b)

Then, the constraints (4.4b) and (4.4c) can be reformulated as

V 2
j ≤ [WG]jj ≤ V

2

j , ∀j ∈ N , (4.6a)

Sj ≤
∑
k:j∼k

Y H
jk [WG]jk ≤ Sj, ∀j ∈ N . (4.6b)

However, it is not always possible to recover a solution of model (4.4) from this unless

the completion W of WG is PSD with rank-1 since thus W would not only satisfy

constraints (4.6), but also can be uniquely decomposed as W = V V H . Therefore,

additional conditions need to be added to ensure the completion of WG is PSD with

rank-1.

First, the cycle condition of a partial matrix WG can be described as:

∑
(j,k)∈c

∠[WG]jk = 0, (4.7)

where c is any cycle in graph G and ∠[WG]jk is the voltage phase differences of line

(j, k). Additionally, we take the following conditions into account

W � 0, rank(W ) = 1, (4.8)

Wc(G) � 0, rank(Wc(G)) = 1, (4.9)

WG(j, k) � 0, rank(WG(j, k)) = 1, (j, k) ∈ E . (4.10)

where W is a (N + 1)× (N + 1) matrix, WG and Wc(G) are partial matrices.
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Theorem 1 (Low, 2014, Theorem 2). Fix a graph G on N + 1 nodes and any

chordal extension c(G) of G. Assuming Wjj > 0, [Wc(G)]jj > 0 and [WG]jj > 0,

j ∈ N , we have:

1. Given an (N + 1)× (N + 1) matrix W that satisfies (4.8), its submatrix Wc(G)

satisfies (4.9).

2. Given a partial matrix Wc(G) that satisfies (4.9), its submatrix WG satisfies

(4.10) and cycle condition (4.7).

3. Given a partial matrix WG that satisfies (4.10) and the cycle condition (4.7),

there is a completion W of WG that satisfies (4.8).

Loosely speaking, Theorem 1 indicates the completion W of partial matrix

WG is PSD with rank-1 (condition (4.8)) if and only if it has a PSD rank-1 chordal

extension Wc(G) (condition (4.9)), if and only if the partial matrix WG satisfies the

cycle condition (4.7) and is 2× 2 PSD rank-1 (condition (4.10)).

Based on the constraints (4.6) and conditions (4.7)-(4.10), the following sets

are defined:

W := {W | W satisfies (4.6), (4.8)}, (4.11)

Wc(G) := {Wc(G) | Wc(G) satisfies (4.6), (4.9)}, (4.12)

WG := {WG | WG satisfies (4.6), (4.7), (4.10)}. (4.13)

Corollary 1 (Low, 2014, Corollary 3). Given a partial matrix Wc(G) ∈ Wc(G) or

WG ∈ WG there is a unique PSD rank-1 completion W ∈ W.

Theorem 2 (Low, 2014, Theorem 4). V ≡ W ≡ Wc(G) ≡ WG.
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According to Theorem 2, solving the OPF model (4.4) is equivalent to solving the

following problem:

min
W

f(WG)

s.t. W satisfies W or Wc(G) or WG

(4.14)

which is still difficult to solve because rank-1 conditions and the cycle condition (4.7)

make the feasible regions W , Wc(G) and WG nonconvex. However, we can obtain

SDP, chordal, and SOCP relaxations of OPF problem, respectively, by removing the

latter restrictions, which leads to:

OPF-sdp:

min
W

f(WG)

s.t. W satisfies (4.6)

W � 0

(4.15)

OPF-ch:

min
Wc(G)

f(WG)

s.t. Wc(G) satisfies (4.6)

Wc(G) � 0

(4.16)

OPF-socp:

min
WG

f(WG)

s.t. WG satisfies (4.6)

WG(j, k) � 0, (j, k) ∈ E .

(4.17)

Note that the above constraint WG(j, k) � 0 is in fact equivalent to [WG]jk = [WG]Hkj

and

[WG]jj > 0, [WG]kk > 0, [WG]jj[WG]kk ≥ [WG]jk[WG]jk,
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which is a rotated second-order cone making the convex relaxation OPF-socp (4.17)

a second-order cone programming (SOCP) problem. Relaxation OPF-sdp (4.15) is

the most computationally intensive, especially for large sparse networks. In contrast,

relaxation OPF-socp (4.17) is the simplest to solve, and relaxation OPF-ch (4.16)

usually needs less computation compared to OPF-sdp (4.15). The relaxations OPF-

sdp (4.15) and OPF-ch (4.16) are equally tight but strictly tighter than OPF-socp

(4.17) for mesh networks. However, they are equally tight for radial networks.

To guarantee the exactness of relaxations OPF-sdp (4.15), OPF-ch (4.16)

and OPF-socp (4.17) over radial networks, three types of sufficient conditions which

have implications on power injections, voltage magnitudes and voltage angles respec-

tively are given and discussed in [75].

4.2 A Specific Conic Relaxation of OPF Problem for Radial Networks

The second-order cone programming (SOCP) for radial networks was first pro-

posed in [58]. Although the reformulation has been illustrated numerically, however,

whether or when it would turn out to be exact has not been studied. In this section,

we will first present the SOCP reformulation by Jabr [58], and then discuss its exact-

ness given the over-satisfaction condition. Lastly, we propose an “extended” OPF by

considering storage variables and prove the exactness of it over radial networks.

4.2.1 SOCP Relaxation and Exactness

Based on Section 1.3.1.1, the OPF problem in polar form can be expressed

as follows, with a quadratic objective function minimizing the cost of real power
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generation (the same as function (1.9) described in Section 1.3.3):

min
∑
j

(aj + bjPGj + cjPGj
2) (4.18a)

s. t. PGj − PLj =
N∑
k=1

|Vj||Vk| [Gjk cos(θj − θk) +Bjk sin(θj − θk)] , (4.18b)

QGj −QLj =
N∑
k=1

|Vj||Vk| [Gjk sin(θj − θk)−Bjk cos(θj − θk)] , (4.18c)

PGj
≤ PGj ≤ PGj , (4.18d)

Q
Gj
≤ QGj ≤ QGj

, (4.18e)

V j ≤ |Vj| ≤ V j. (4.18f)

According to [58, 59], by introducing additional variables uj := |Vj|2, Rjk :=

|Vj||Vk| cos(θj − θk), Ijk := |Vj||Vk| sin(θj − θk), we can reformulate the OPF problem

in polar form (4.18) equivalently as:

min
∑
j

(aj + bjPGj + cjPGj
2) (4.19a)

s. t. PGj − PLj = ujGjj +
N∑

k=1,k 6=j

[GjkRjk +BjkIjk] , (4.19b)

QGj −QLj = −ujBjj +
N∑

k=1,k 6=j

[GjkIjk −BjkRjk] , (4.19c)

ujuk = R2
jk + I2

jk, (4.19d)

θj − θk = tan−1 Ijk
Rjk

, (4.19e)

PGj
≤ PGj ≤ PGj , (4.19f)

Q
Gj
≤ QGj ≤ QGj

, (4.19g)

V 2
j ≤ uj ≤ V

2

j . (4.19h)
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where (4.19e) corresponds to the cycle condition (4.7). Since we focus on studying

OPF problem over radial networks, the cycle condition is vacuous and can be removed.

Thus the exact conic reformulation for OPF problem with a tree topology can be

expressed as:

min
∑
j

(aj + bjPGj + cjPGj
2) (4.20a)

s. t. PGj − PLj = ujGjj +
N∑

k=1,k 6=j

[GjkRjk +BjkIjk] , (4.20b)

QGj −QLj = −ujBjj +
N∑

k=1,k 6=j

[GjkIjk −BjkRjk] , (4.20c)

ujuk = R2
jk + I2

jk, (4.20d)

PGj
≤ PGj ≤ PGj , (4.20e)

Q
Gj
≤ QGj ≤ QGj

, (4.20f)

V 2
j ≤ uj ≤ V

2

j . (4.20g)

However, the simplified problem (4.20) is still nonconvex due to constraints (4.20d).

These constraints correspond to the requirements of WG(j, k) � 0 and rank(WG(j, k))

= 1 in conditions (4.10). Relaxing constraints (4.20d) to ujuk ≥ R2
jk+I2

jk is equivalent

to removing the rank-1 requirement. By relaxing the equality in constraints (4.20d),

the conic relaxation, which can be considered as one specific form of OPF-socp (4.17)
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is as follows:

min
∑
j

(aj + bjPGj + cjPGj
2) (4.21a)

s. t. PGj − PLj = ujGjj +
N∑

k=1,k 6=j

[GjkRjk +BjkIjk] , (4.21b)

QGj −QLj = −ujBjj +
N∑

k=1,k 6=j

[GjkIjk −BjkRjk] , (4.21c)

ujuk ≥ R2
jk + I2

jk, (4.21d)

PGj
≤ PGj ≤ PGj , (4.21e)

Q
Gj
≤ QGj ≤ QGj

, (4.21f)

V 2
j ≤ uj ≤ V

2

j . (4.21g)

If the optimal solution of conic relaxation problem (4.21) makes constraint (4.21d)

active (achieving equality), it will also be the optimal solution for the original OPF

problem over radial networks. In [58], it seeks to incorporate a function of Rjk into

objective in order to enforce constraints (4.21d) to be active but this has not been

proved. That is, we can not exclude the possibility the optimal solution would make

some of constraints (4.21d) not active. According to our computational study results,

usually not all of constraints (4.21d) can achieve equality if we use the utility func-

tion consisting of generation cost and function of variables Rjk as the objective to

be minimized. Note that the inactiveness of constraints (4.21d) corresponds to the

condition that the optimal solution of OPF-socp (4.17) can not satisfy the rank-1

requirement. The load over-satisfaction condition in [19, 106, 105] provides a possi-

bility to ensure the exactness of this conic relaxation, which is in fact a special form
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of power injections conditions described in [75]. It suggests replacing “equality” with

“greater than” in constraints (4.21b)-(4.21c) representing that over-delivery of power

is permitted at nodes. According to [106, 105], a practical power network would still

be in a normal condition even if load over-satisfaction is allowed since receiving extra

power for free is unreasonable. More specifically, power may loss through transmission

lines and the generation cost would increase as amount of power increases.

The conic relaxation of modified OPF problem with load over-satisfaction is

formulated as:

min
∑
j

(aj + bjPGj + cjPGj
2) (4.22a)

s. t. PGj − PLj ≥ ujGjj +
N∑

k=1,k 6=j

[GjkRjk +BjkIjk] , (4.22b)

QGj −QLj ≥ −ujBjj +
N∑

k=1,k 6=j

[GjkIjk −BjkRjk] , (4.22c)

ujuk ≥ R2
jk + I2

jk, (4.22d)

PGj
≤ PGj ≤ PGj , (4.22e)

Q
Gj
≤ QGj ≤ QGj

, (4.22f)

V 2
j ≤ uj ≤ V

2

j . (4.22g)

Proposition 5. The conic relaxation of modified OPF problem (4.22) has an optimal

solution at which every inequality in constraints (4.22d) becomes an equality.

Before the proof, some basic knowledge of admittance yjk and admittance ma-

trix entry Yjk is given. First, the admittance yjk = gjk + ibjk, where gjk =
rjk

r2jk+x2jk
,

bjk = − xjk
r2jk+x2jk

and rjk, xjk, gjk, bjk are resistance, reactance, conductance and
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susceptance respectively. According to Yjk = Gjk + iBjk = −yjk, we can have

Gjk = − rjk
r2jk+x2jk

and Bjk =
xjk

r2jk+x2jk
. Due to the nonnegativity of resistance rjk and xjk

([106, 105, 76, 7]), Gjk is nonpositive and Bjk is nonnegative in power flow equations.

Proof. Consider an arbitrary solution (Ropt, Iopt, uopt, P opt
G , Qopt

G ) of modified conic re-

laxation (4.22). Define R̂opt
jk =

√
uoptj uoptk − (Ioptjk )2. Constraints (4.22d) become equal-

ity for (R̂opt, Iopt, uopt). Furthermore, given a branch (j, k) ∈ E, one can write

GjkR̂
opt
jk +BjkI

opt
jk ≤ GjkR

opt
jk +BjkI

opt
jk , (4.23a)

GjkI
opt
jk −BjkR̂

opt
jk ≤ GjkI

opt
jk −BjkR

opt
jk . (4.23b)

Note that the above inequality is inferred from the fact that Gjk is nonpositive and

Bjk is nonnegative. Thus,

uoptj Gjj +
N∑

k=1,k 6=j

[
GjkR̂

opt
jk +BjkI

opt
jk

]
≤ uoptj Gjj +

N∑
k=1,k 6=j

[
GjkR

opt
jk +BjkI

opt
jk

]
(4.24a)

≤ P opt
Gj
− PLj ,

−uoptj Bjj +
N∑

k=1,k 6=j

[
GjkI

opt
jk −BjkR̂

opt
jk

]
≤ −uoptj Bjj +

N∑
k=1,k 6=j

[
GjkI

opt
jk −BjkR

opt
jk

]
(4.24b)

≤ Qopt
Gj
−QLj .

Therefore, (R̂opt, Iopt, uopt, P opt
G , Qopt

G ) is another solution of modified conic relaxation

(4.22) at which every constraint (4.22d) becomes an equality.

Although we can guarantee that the constraints (4.22d) when solving relaxed model

(4.22) are always active, however, the equality of constraints (4.22b) and (4.22c) are
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not ensured. Therefore, the conic relaxation of modified OPF problem with load

over-satisfaction cannot always be an exact relaxation of problem (4.18) although

which is advocated intuitively in [106, 105] because receiving extra power for free is

unreasonable. The following numerical example in Section 4.3 also verifies this.

4.2.2 SOCP Relaxation of “Extended” OPF and Exactness

By further defining storage variables PSj and QSj , we can formulate an “ex-

tended” OPF problem which includes storage variables both in the objective function

and power flow constraints. Since stored energy should be beneficial, the original

objective function can be augmented by adding functions of PSj . The appearance

of storage variables in power flow constraints can be thought of storing extra power,

which in some extent correpsonds to the load over-satisfaction mentioned in Section

4.2.1. Thus, the “extended” OPF problem is formulated as:

min
∑
j

(aj + bjPGj + cjPGj
2)−

∑
j

f(PSj) (4.25a)

s. t. PGj − PLj − PSj =
N∑
k=1

|Vj||Vk| [Gjk cos(θj − θk) +Bjk sin(θj − θk)] , (4.25b)

QGj −QLj −QSj =
N∑
k=1

|Vj||Vk| [Gjk sin(θj − θk)−Bjk cos(θj − θk)] , (4.25c)

PGj
≤ PGj ≤ PGj , (4.25d)

Q
Gj
≤ QGj ≤ QGj

, (4.25e)

V j ≤ |Vj| ≤ V j. (4.25f)

where f(PSj) is a concave function of variables PSj . As a result, the objective function

is still convex.
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The corresponding conic relaxation is expressed as:

min
∑
j

(aj + bjPGj + cjPGj
2)−

∑
j

f(PSj) (4.26a)

s. t. PGj − PLj − PSj = ujGjj +
N∑

k=1,k 6=j

[GjkRjk +BjkIjk] , (4.26b)

QGj −QLj −QSj = −ujBjj +
N∑

k=1,k 6=j

[GjkIjk −BjkRjk] , (4.26c)

ujuk ≥ R2
jk + I2

jk, (4.26d)

PGj
≤ PGj ≤ PGj , (4.26e)

Q
Gj
≤ QGj ≤ QGj

, (4.26f)

V 2
j ≤ uj ≤ V

2

j . (4.26g)

Proposition 6. The conic relaxation of “extended” OPF (4.26) always ends with an

optimal solution at which inequality in constraints (4.26d) becomes an equality.

Proof. Consider an arbitrary solution (Ropt, Iopt, uopt, P opt
G , Qopt

G , P opt
S , Qopt

S ) of conic

relaxation of “extended” OPF (4.26). Define R̂opt
jk =

√
uoptj uoptk − (Ioptjk )2, then R̂opt

jk ≥

Ropt
jk . Constraints (4.26d) become equality for (R̂opt, Iopt, uopt). Furthermore, we define

P̂ opt
Sj

= P opt
Gj
− P opt

Lj
−

(
uoptj Gjj +

N∑
k=1,k 6=j

[
GjkR̂

opt
jk +BjkI

opt
jk

])
, (4.27a)

Q̂opt
Sj

= Qopt
Gj
−Qopt

Lj
−

(
−uoptj Bjj +

N∑
k=1,k 6=j

[
GjkI

opt
jk −BjkR̂

opt
jk

])
. (4.27b)

We may find that (R̂opt, Iopt, uopt, P opt
G , Qopt

G , P̂ opt
S , Q̂opt

S ) is a feasible solution of (4.26).

If any constraint (4.26d) is inactive, there must exist some R̂opt
jk > Ropt

jk , and corre-

spondingly GjkR̂
opt
jk + BjkI

opt
jk ≤ GjkR

opt
jk + BjkI

opt
jk . Thus, P̂ opt

Sj
≥ P opt

Sj
, which would
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result in a smaller objective value since the values of P opt
G do not change. That means,

if some of constraints (4.26d) can not become active for (Ropt, Iopt, uopt), then we can

obtain a better solution (R̂opt, Iopt, uopt, P opt
G , Qopt

G , P̂ opt
S , Q̂opt

S ) which contradicts the

optimal solution assumption. Therefore, conic relaxation (4.26) always ends with an

optimal solution at which inequality in (4.26d) becomes an equality.

Thus, we can always obtain the optimal solution of problem (4.25) by solving

its conic relaxation (4.26).

4.3 Numerical Example

This section empirically demonstrates if conic relaxations (4.22) and (4.26) are

exact based on a 6-bus electrical power network dataset from [87], as shown in Figure

4.1.

Figure 4.1: 6-bus radial network
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The base voltage rating is 10 kV and the base power rating is 100 MVA. A

detailed specification of parameters is given in Table 4.1 and Table 4.2. The upper and

lower bounds of real and reactive power at generator bus 1 are specified as -0.08 and

0.08. The range of voltage at any bus is prescribed by 0.95 and 1.05. For simplicity,

we specify parameters aj, cj = 0 and bj = 1. Besides, we simplify the concave function

f(PSj) as g · PSj where g represents a fixed number and here is chosen as 0.1.

Branch No. Bus-i Bus-j r x
1 2 1 0.0250 0.3182
2 3 2 0.2839 0.1931
3 4 2 0.2677 0.1765
4 5 3 0.0611 0.0597
5 6 3 0.2074 0.1440

Table 4.1: Branch data of 6-bus radial net-

work

First, the conic relaxation of modified OPF problem with load over-satisfaction

(4.22) has been solved with C++ and CPLEX 12.5 solver. We find that there are

some constraints (4.22c) not active. In other words, we cannot claim the optimal

solution of problem (4.22) will also be the optimal solution of problem (4.20), which

in fact is an exact reformulation of problem (4.18) over distribution network. This

result contradicts the intuitive expectation in [106, 105], which assert the modified

relaxation problem allowing for load over-satisfaction condition would always achieve
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Bus No. MW MVAR
1 0.0031 0.0023
2 0.0071 0.0062
3 0.0088 0.0030
4 0.0082 0.0061
5 0.0055 0.0029
6 0.0057 0.0060

Table 4.2: Load data of

6-bus radial network

equality for power flow constraints (like constraints (4.22b)–(4.22c)) because receiving

extra power for free is unreasonable. Additionally, we further conduct some tests by

augmenting the objective function of problem (4.22), with penalty on extra reactive

power in the power network, which could be expressed as

∑
j

(aj + bj · PGj + cj · PGj 2 + g′ ·QGj), (4.28)

where g′ is a fixed positive number representing penalty. Although the augmented

formulation is obviously not any more a relaxation problem of original problem (4.18),

we want to demonstrate here that by penalizing extra reactive power, the relaxed

power flow constraints (allowing for load over-satisfaction condition) might become

active. In this experiment, different values of parameter g′, 1, 0.1, 0.01, 1e-03, 1e-04,

1e-05 and 1e-06 are used, and we find that if we solve the problem with g′ = 1,

0.1 or 0.01, constraints (4.22b)–(4.22d) would become active. That means, certain

penalty weights on reactive power would help the OPF problem under load over-

satisfaction condition achieve equality for power flow constraints. However, this is
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just an empirical observation without any rigorous proof.

The conic relaxed model (4.26) is also solved with C++ and CPLEX 12.5

solver, and the optimal objective value is 0.0385565. According to its optimal solution,

we can recover the optimal values of certain variables in “extended” OPF (4.25) with

|Vj| =
√
uj, (4.29a)

θj − θk = arccos(
Rjk√
uj
√
uk

), (4.29b)

where θ1 = 0. The exactness of conic relaxation (4.26) is shown in Table 4.3.

Constraint (4.26b) Constraint (4.26c) Constraint (4.26d)
5.94072e-009 9.71445e-017 4.48394e-008
1.39161e-007 -4.12864e-016 -9.39032e-009
3.50254e-007 1.09678e-015 -8.33856e-009
7.53595e-008 6.07153e-018 -1.78298e-008
2.14065e-007 -3.46945e-016 -7.77525e-009
9.09494e-008 2.1684e-016

Table 4.3: Tightness of constraints in the conic re-

laxation of “extended” OPF

In addition, we modify the constraints (4.26d) by changing “greater or equal

to” sign to “equal to” sign, to obtain a nonconvex variant of problem (4.26). Note that

this nonconvex variant would be an exact reformulation of (4.25) over radial networks.

Then, we solve the nonconvex variant in AMPL using nonlinear solvers CONOPT,

KNITRO, MINOS and SNOPT respectively. All the nonlinear solvers obtain the same
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optimal objective value 0.0385571 (CONOPT, MINOS and SNOPT give exactly the

same solutions), which is slightly larger than 0.0385565 by solving problem (4.26)

with C++ and CPLEX 12.5 solver. This difference might be due to numerical errors.

Moreover, we also solve the problem (4.26) with KNITRO nonlinear solver and find its

optimal solution is almost the same as solving the nonconvex variant, with maximum

relative difference of 1e-05.

4.4 Conclusions

In this chapter, the progresses in convex relaxation of OPF problem over radial

network are first discussed, and a specific SOCP relaxation originally presented in [58]

is elaborated. Then, we propose an “extended” OPF problem by considering storage

variables and its corresponding SOCP relaxation. This conic relaxation of “extended”

OPF problem over distribution network has been proved to be exact theoretically and

empirically.

The purpose that we focus on SOCP relaxation of OPF problem or “extended”

OPF problem rather than other types of relaxations such as SDP, is that if a math-

ematical optimization problem not only includes power flow equations but also in-

volves integer variables, a SOCP relaxation of power flow constraints would result in a

mixed-integer second-order cone programming (MISOCP) relaxed problem which will

be much easier to handle, compared with a mixed-integer semidefinite programming

relaxed problem with SDP relaxation of power flow constraints for example, since at

each branch and bound node a SOCP problem will be solved more efficiently than
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SDP problem.

In summary, the contribution of this chapter is three-fold. First, we augment

the OPF problem over distribution networks by including storage variables to build

a meaningful “extended” OPF problem, and prove its SOCP relaxation to be exact.

That means, we can efficiently solve a nonlinear nonconvex problem via solving its

SOCP relaxation and guarantee the global optimality of the solution. Second, this

“extended” OPF problem can be considered as a “subproblem” when formulating cer-

tain mathematical optimization problems in a broader view which would take power

flow equations and storage devices into considerations. A good example might be a

mathematical optimization model which integrates renewable energy (such as wind,

hydro and solar) into current power grid. Last but not least, we find the assertion in

[106, 105] the modified relaxation problem (4.22) allowing for load over-satisfaction

condition would always achieve equality for power flow constraints (4.22b)–(4.22c))

because receiving extra power for free is unreasonable, is not correct according to the

empirical study of the 6-bus radial network above.
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